Goto

Collaborating Authors

Credit denial in the age of AI

#artificialintelligence

Banks have been in the business of deciding who is eligible for credit for centuries. But in the age of artificial intelligence (AI), machine learning (ML), and big data, digital technologies have the potential to transform credit allocation in positive as well as negative directions. Given the mix of possible societal ramifications, policymakers must consider what practices are and are not permissible and what legal and regulatory structures are necessary to protect consumers against unfair or discriminatory lending practices. In this paper, I review the history of credit and the risks of discriminatory practices. I discuss how AI alters the dynamics of credit denials and what policymakers and banking officials can do to safeguard consumer lending.


Fairness in algorithmic decision-making

#artificialintelligence

Algorithmic or automated decision systems use data and statistical analyses to classify people for the purpose of assessing their eligibility for a benefit or penalty. Such systems have been traditionally used for credit decisions, and currently are widely used for employment screening, insurance eligibility, and marketing. They are also used in the public sector, including for the delivery of government services, and in criminal justice sentencing and probation decisions. Most of these automated decision systems rely on traditional statistical techniques like regression analysis. Recently, though, these systems have incorporated machine learning to improve their accuracy and fairness. These advanced statistical techniques seek to find patterns in data without requiring the analyst to specify in advance which factors to use. They will often find new, unexpected connections that might not be obvious to the analyst or follow from a common sense or theoretic understanding of the subject matter. As a result, they can help to discover new factors that improve the accuracy of eligibility predictions and the decisions based on them.


Algorithms and bias: What lenders need to know White & Case LLP International Law Firm, Global Law Practice

#artificialintelligence

Much of the software now revolutionizing the financial services industry depends on algorithms that apply artificial intelligence (AI)--and increasingly, machine learning--to automate everything from simple, rote tasks to activities requiring sophisticated judgment. These algorithms and the analyses that undergird them have become progressively more sophisticated as the pool of potentially meaningful variables within the Big Data universe continues to proliferate. When properly implemented, algorithmic and AI systems increase processing speed, reduce mistakes due to human error and minimize labor costs, all while improving customer satisfaction rates. Creditscoring algorithms, for example, not only help financial institutions optimize default and prepayment rates, but also streamline the application process, allowing for leaner staffing and an enhanced customer experience. When effective, these algorithms enable lenders to tweak approval criteria quickly and continually, responding in real time to both market conditions and customer needs. Both lenders and borrowers stand to benefit. For decades, financial services companies have used different types of algorithms to trade securities, predict financial markets, identify prospective employees and assess potential customers.


Algorithms and bias: What lenders need to know JD Supra

#artificialintelligence

Much of the software now revolutionizing the financial services industry depends on algorithms that apply artificial intelligence (AI)--and increasingly, machine learning--to automate everything from simple, rote tasks to activities requiring sophisticated judgment. These algorithms and the analyses that undergird them have become progressively more sophisticated as the pool of potentially meaningful variables within the Big Data universe continues to proliferate. When properly implemented, algorithmic and AI systems increase processing speed, reduce mistakes due to human error and minimize labor costs, all while improving customer satisfaction rates. Creditscoring algorithms, for example, not only help financial institutions optimize default and prepayment rates, but also streamline the application process, allowing for leaner staffing and an enhanced customer experience. When effective, these algorithms enable lenders to tweak approval criteria quickly and continually, responding in real time to both market conditions and customer needs. Both lenders and borrowers stand to benefit. For decades, financial services companies have used different types of algorithms to trade securities, predict financial markets, identify prospective employees and assess potential customers.