Data mining, text mining, natural language processing, and computational linguistics: some definitions

#artificialintelligence

Every once in a while an innocuous technical term suddenly enters public discourse with a bizarrely negative connotation. I first noticed the phenomenon some years ago, when I saw a Republican politician accusing Hillary Clinton of "parsing." From the disgust with which he said it, he clearly seemed to feel that parsing was morally equivalent to puppy-drowning. It seemed quite odd to me, since I'd only ever heard the word "parse" used to refer to the computer analysis of sentence structures. The most recent word to suddenly find itself stigmatized by Republicans (yes, it does somehow always seem to be Republican politicians who are involved in this particular kind of linguistic bullshittery) is "encryption."


Big Data, Deep Learning and Blockchain Enhancing Healthcare Industry Analytics Insight

#artificialintelligence

In spite of noteworthy headway in innovation in various fields, health management and authoritative frameworks leave a ton of opportunity to get better. At present, in the greater part of the healthcare enterprises, the health record of a patient is put away manually which makes it harder to keep up such colossal measure of data. It is so difficult to keep up this healthcare information precisely. As a matter of first importance, all these information changes constantly, doctors are always moving all through systems, they are continually adopting new insurance coverage, they're changing office areas and changing their affiliations with facilities and clinics and the patient is analyzed at different health associations. So, the information keeps on changing except if doctors are great about reaching their systems each time one of those information fields changes which will drop out of synchronizing rapidly.


Making big data small BizTimes Media Milwaukee

#artificialintelligence

We live in a world of health data. With fitness trackers, electronic health records, sleep monitoring and countless other ways to track and measure our health, we've entered an exciting era in which the flow of data to our doctors, pharmacists and other care providers is revolutionizing how and how fast health care services are delivered. It's also given consumers windows into their own health that was just a dream 20, 10, even five years ago. Not long ago, we really only got a picture of our health once a year when we went to our doctor for an annual check-up. We'd get blood drawn, blood pressure, weight and other vital statistics were taken, and our doctor would declare us healthy or give us things to work on.


Predicting Diabetes Using a Machine Learning Approach - DZone Big Data

#artificialintelligence

Diabetes is one of deadliest diseases in the world. It is not only a disease but also a creator of different kinds of diseases like heart attack, blindness, kidney diseases, etc. The normal identifying process is that patients need to visit a diagnostic center, consult their doctor, and sit tight for a day or more to get their reports. Moreover, every time they want to get their diagnosis report, they have to waste their money in vain. But with the rise of Machine Learning approaches we have the ability to find a solution to this issue, we have developed a system using data mining which has the ability to predict whether the patient has diabetes or not.


From big data, to AI-enabled services: the future of well-being and healthcare

#artificialintelligence

In the past few years, we observed the emergence of wearable technologies which have mostly been facilitated via fitness and well-being applications, although their true future potential lays in the disrupting force they are placing on the healthcare sector. As a matter of fact, nowadays, thanks to FitBit, Apple smart-watches and Nike connected shoes, we have the ability to track lots of information from our sleeping patterns to extensive body vitals. Nevertheless, the big question is: how do we use this information? To better understand the trends in healthcare and their application, a good example to examine is the work accomplished by Dutch company, Sensara. Sensara is a spin-off European research project: they offer a subscription service for the monitoring of silver consumers in their homes.