Goto

Collaborating Authors

Explanation in Human-AI Systems: A Literature Meta-Review, Synopsis of Key Ideas and Publications, and Bibliography for Explainable AI

arXiv.org Artificial Intelligence

This is an integrative review that address the question, "What makes for a good explanation?" with reference to AI systems. Pertinent literatures are vast. Thus, this review is necessarily selective. That said, most of the key concepts and issues are expressed in this Report. The Report encapsulates the history of computer science efforts to create systems that explain and instruct (intelligent tutoring systems and expert systems). The Report expresses the explainability issues and challenges in modern AI, and presents capsule views of the leading psychological theories of explanation. Certain articles stand out by virtue of their particular relevance to XAI, and their methods, results, and key points are highlighted. It is recommended that AI/XAI researchers be encouraged to include in their research reports fuller details on their empirical or experimental methods, in the fashion of experimental psychology research reports: details on Participants, Instructions, Procedures, Tasks, Dependent Variables (operational definitions of the measures and metrics), Independent Variables (conditions), and Control Conditions.


AI teaches itself to complete the Rubik's cube in just 20 MOVES

Daily Mail - Science & tech

A deep-learning algorithm has been developed which can solve the Rubik's cube faster than any human can. It never fails to complete the puzzle, with a 100 per cent success rate and managing it in around 20 moves. Humans can beat the AI's mark of 18 seconds, the world record is around four seconds, but it is far more inefficient and people often require around 50 moves. It was created by University of California Irvine and can be tried out here. Given an unsolved cube, the machine must decide whether a specific move is an improvement on the existing configuration.


Rubik's cube solved in "fraction of a second" by artificial intelligence machine learning algorithm

#artificialintelligence

Researchers have developed an AI algorithm which can solve a Rubik's cube in a fraction of a second, according to a study published in the journal Nature Machine Intelligence. The system, known as DeepCubeA, uses a form of machine learning which teaches itself how to play in order to crack the puzzle without being specifically coached by humans. "Artificial intelligence can defeat the world's best human chess and Go players, but some of the more difficult puzzles, such as the Rubik's Cube, had not been solved by computers, so we thought they were open for AI approaches," Pierre Baldi, one of the developers of the algorithm and computer scientist from the University of California, Irvine, said in a statement. According to Baldi, the latest development could herald a new generation of artificial intelligence (AI) deep-learning systems which are more advanced than those used in commercially available applications such as Siri and Alexa. "These systems are not really intelligent; they're brittle, and you can easily break or fool them," Baldi said.


Artificial Intelligence for Social Good: A Survey

arXiv.org Artificial Intelligence

Its impact is drastic and real: Youtube's AIdriven recommendation system would present sports videos for days if one happens to watch a live baseball game on the platform [1]; email writing becomes much faster with machine learning (ML) based auto-completion [2]; many businesses have adopted natural language processing based chatbots as part of their customer services [3]. AI has also greatly advanced human capabilities in complex decision-making processes ranging from determining how to allocate security resources to protect airports [4] to games such as poker [5] and Go [6]. All such tangible and stunning progress suggests that an "AI summer" is happening. As some put it, "AI is the new electricity" [7]. Meanwhile, in the past decade, an emerging theme in the AI research community is the so-called "AI for social good" (AI4SG): researchers aim at developing AI methods and tools to address problems at the societal level and improve the wellbeing of the society.


Artificial Intelligence Enabled Software Defined Networking: A Comprehensive Overview

arXiv.org Artificial Intelligence

Software defined networking (SDN) represents a promising networking architecture that combines central management and network programmability. SDN separates the control plane from the data plane and moves the network management to a central point, called the controller, that can be programmed and used as the brain of the network. Recently, the research community has showed an increased tendency to benefit from the recent advancements in the artificial intelligence (AI) field to provide learning abilities and better decision making in SDN. In this study, we provide a detailed overview of the recent efforts to include AI in SDN. Our study showed that the research efforts focused on three main sub-fields of AI namely: machine learning, meta-heuristics and fuzzy inference systems. Accordingly, in this work we investigate their different application areas and potential use, as well as the improvements achieved by including AI-based techniques in the SDN paradigm.