Attention-based Audio-Visual Fusion for Robust Automatic Speech Recognition

arXiv.org Machine Learning

Automatic speech recognition can potentially benefit from the lip motion patterns, complementing acoustic speech to improve the overall recognition performance, particularly in noise. In this paper we propose an audio-visual fusion strategy that goes beyond simple feature concatenation and learns to automatically align the two modalities, leading to enhanced representations which increase the recognition accuracy in both clean and noisy conditions. We test our strategy on the TCD-TIMIT and LRS2 datasets, designed for large vocabulary continuous speech recognition, applying three types of noise at different power ratios. We also exploit state of the art Sequence-to-Sequence architectures, showing that our method can be easily integrated. Results show relative improvements from 7% up to 30% on TCD-TIMIT over the acoustic modality alone, depending on the acoustic noise level. We anticipate that the fusion strategy can easily generalise to many other multimodal tasks which involve correlated modalities.


Scalable Factorized Hierarchical Variational Autoencoder Training

arXiv.org Machine Learning

Deep generative models have achieved great success in unsupervised learning with the ability to capture complex nonlinear relationships between latent generating factors and observations. Among them, a factorized hierarchical variational autoencoder (FHVAE) is a variational inference-based model that formulates a hierarchical generative process for sequential data. Specifically, an FHVAE model can learn disentangled and interpretable representations, which have been proven useful for numerous speech applications, such as speaker verification, robust speech recognition, and voice conversion. However, as we will elaborate in this paper, the training algorithm proposed in the original paper is not scalable to datasets of thousands of hours, which makes this model less applicable on a larger scale. After identifying limitations in terms of runtime, memory, and hyperparameter optimization, we propose a hierarchical sampling training algorithm to address all three issues. Our proposed method is evaluated comprehensively on a wide variety of datasets, ranging from 3 to 1,000 hours and involving different types of generating factors, such as recording conditions and noise types. In addition, we also present a new visualization method for qualitatively evaluating the performance with respect to interpretability and disentanglement. Models trained with our proposed algorithm demonstrate the desired characteristics on all the datasets.


Are Microsoft And VocalZoom The Peanut Butter And Chocolate Of Voice Recognition?

#artificialintelligence

Moore's law has driven silicon chip circuitry to the point where we are surrounded by devices equipped with microprocessors. The devices are frequently wonderful; communicating with them – not so much. Pressing buttons on smart devices or keyboards is often clumsy and never the method of choice when effective voice communication is possible. The keyword in the previous sentence is "effective". Technology has advanced to the point where we are in the early stages of being able to communicate with our devices using voice recognition.


Transfer Learning from Speaker Verification to Multispeaker Text-To-Speech Synthesis

Neural Information Processing Systems

We describe a neural network-based system for text-to-speech (TTS) synthesis that is able to generate speech audio in the voice of many different speakers, including those unseen during training. Our system consists of three independently trained components: (1) a speaker encoder network, trained on a speaker verification task using an independent dataset of noisy speech from thousands of speakers without transcripts, to generate a fixed-dimensional embedding vector from seconds of reference speech from a target speaker; (2) a sequence-to-sequence synthesis network based on Tacotron 2, which generates a mel spectrogram from text, conditioned on the speaker embedding; (3) an auto-regressive WaveNet-based vocoder that converts the mel spectrogram into a sequence of time domain waveform samples. We demonstrate that the proposed model is able to transfer the knowledge of speaker variability learned by the discriminatively-trained speaker encoder to the new task, and is able to synthesize natural speech from speakers that were not seen during training. We quantify the importance of training the speaker encoder on a large and diverse speaker set in order to obtain the best generalization performance. Finally, we show that randomly sampled speaker embeddings can be used to synthesize speech in the voice of novel speakers dissimilar from those used in training, indicating that the model has learned a high quality speaker representation.


EdgeSpeechNets: Highly Efficient Deep Neural Networks for Speech Recognition on the Edge

arXiv.org Machine Learning

Despite showing state-of-the-art performance, deep learning for speech recognition remains challenging to deploy in on-device edge scenarios such as mobile and other consumer devices. Recently, there have been greater efforts in the design of small, low-footprint deep neural networks (DNNs) that are more appropriate for edge devices, with much of the focus on design principles for hand-crafting efficient network architectures. In this study, we explore a human-machine collaborative design strategy for building low-footprint DNN architectures for speech recognition through a marriage of human-driven principled network design prototyping and machine-driven design exploration. The efficacy of this design strategy is demonstrated through the design of a family of highly-efficient DNNs (nicknamed EdgeSpeechNets) for limited-vocabulary speech recognition. Experimental results using the Google Speech Commands dataset for limited-vocabulary speech recognition showed that EdgeSpeechNets have higher accuracies than state-of-the-art DNNs (with the best EdgeSpeechNet achieving ~97% accuracy), while achieving significantly smaller network sizes (as much as 7.8x smaller) and lower computational cost (as much as 36x fewer multiply-add operations, 10x lower prediction latency, and 16x smaller memory footprint on a Motorola Moto E phone), making them very well-suited for on-device edge voice interface applications.