RNN-based Online Handwritten Character Recognition Using Accelerometer and Gyroscope Data

arXiv.org Machine Learning

This abstract explores an RNN-based approach to online handwritten recognition problem. Our method uses data from an accelerometer and a gyroscope mounted on a handheld pen-like device to train and run a character pre-diction model. We have built a dataset of timestamped gyroscope and accelerometer data gathered during the manual process of handwriting Latin characters, labeled with the character being written; in total, the dataset con-sists of 1500 gyroscope and accelerometer data sequenc-es for 8 characters of the Latin alphabet from 6 different people, and 20 characters, each 1500 samples from Georgian alphabet from 5 different people. with each sequence containing the gyroscope and accelerometer data captured during the writing of a particular character sampled once every 10ms. We train an RNN-based neural network architecture on this dataset to predict the character being written. The model is optimized with categorical cross-entropy loss and RMSprop optimizer and achieves high accuracy on test data.


Handwritten Amharic Character Recognition Using a Convolutional Neural Network

arXiv.org Machine Learning

Amharic is the official language of the Federal Democratic Republic of Ethiopia. There are lots of historic Amharic and Ethiopic handwritten documents addressing various relevant issues including governance, science, religious, social rules, cultures and art works which are very reach indigenous knowledge. The Amharic language has its own alphabet derived from Ge'ez which is currently the liturgical language in Ethiopia. Handwritten character recognition for non Latin scripts like Amharic is not addressed especially using the advantages of the state of the art techniques. This research work designs for the first time a model for Amharic handwritten character recognition using a convolutional neural network. The dataset was organized from collected sample handwritten documents and data augmentation was applied for machine learning. The model was further enhanced using multi-task learning from the relationships of the characters. Promising results are observed from the later model which can further be applied to word prediction.


Handwritten Chinese Character Recognition by Convolutional Neural Network and Similarity Ranking

arXiv.org Machine Learning

Convolution Neural Networks (CNN) have recently achieved state-of-the art performance on handwritten Chinese character recognition (HCCR). However, most of CNN models employ the SoftMax activation function and minimize cross entropy loss, which may cause loss of inter-class information. To cope with this problem, we propose to combine cross entropy with similarity ranking function and use it as loss function. The experiments results show that the combination loss functions produce higher accuracy in HCCR. This report briefly reviews cross entropy loss function, a typical similarity ranking function: Euclidean distance, and also propose a new similarity ranking function: Average variance similarity. Experiments are done to compare the performances of a CNN model with three different loss functions. In the end, SoftMax cross entropy with Average variance similarity produce the highest accuracy on handwritten Chinese characters recognition.


How Can You Be A Person Of Interest As Told By An Artificial Intelligence ?

#artificialintelligence

'Artificial intelligence (AI) is intelligence exhibited by machines. In computer science, an ideal "intelligent" machine is a flexible rational agent that perceives its environment and takes actions that maximize its chance of success at some goal. Colloquially, the term "artificial intelligence" is applied when a machine mimics "cognitive" functions that humans associate with other human minds, such as "learning" and "problem solving". As machines become increasingly capable, facilities once thought to require intelligence are removed from the definition. For example, optical character recognition is no longer perceived as an exemplar of "artificial intelligence" having become a routine technology.


Comparison of Human and Machine Word Recognition

Neural Information Processing Systems

We present a study which is concerned with word recognition rates for heavily degraded documents. We compare human with machine reading capabilitiesin a series of experiments, which explores the interaction of word/non-word recognition, word frequency and legality of non-words with degradation level. We also study the influence of character segmentation, andcompare human performance with that of our artificial neural network model for reading. We found that the proposed computer model uses word context as efficiently as humans, but performs slightly worse on the pure character recognition task. 1 Introduction Optical Character Recognition (OCR) of machine-print document images ┬Ěhas matured considerably during the last decade. Recognition rates as high as 99.5% have been reported ongood quality documents. However, for lower image resolutions (200 Dpl and below), noisy images, images with blur or skew, the recognition rate declines considerably. Inbad quality documents, character segmentation is as big a problem as the actual character recognition.