Goto

Collaborating Authors

Companion Cognitive Systems: A Step toward Human-Level AI

AI Magazine

We are developing Companion Cognitive Systems, a new kind of software that can be effectively treated as a collaborator. Aside from their potential utility, we believe this effort is important because it focuses on three key problems that must be solved to achieve human-level AI: Robust reasoning and learning, interactivity, and longevity. We describe the ideas we are using to develop the first architecture for Companions: analogical processing, grounded in cognitive science for reasoning and learning, sketching and concept maps to improve interactivity, and a distributed agent architecture hosted on a cluster to achieve performance and longevity. We outline some results on learning by accumulating examples derived from our first experimental version.


Analogy and Relational Representations in the Companion Cognitive Architecture

AI Magazine

This includes the physical world, where qualitative representations have a long track record of providing human-level reasoning and performance (Forbus 2014), but also in social reasoning (for example, degrees of blame [Tomai and Forbus 2007]). Qualitative representations carve up continuous phenomena into symbolic descriptions that serve as a bridge between perception and cognition, facilitate everyday reasoning and communication, and help ground expert reasoning. We close with some lessons (Forbus, Klenk, and Hinrichs 2009) is on higher-order learned and open problems. In Newell's (1990) timescale proposed that analogy involves the construction of decomposition of cognitive phenomena, conceptual mappings between two structured, relational representations. Thus to the other, based on the correspondences), and a we approximate subsystems whose operations occur score indicating the overall quality of the match. For which one is trying to reason about, and hence inferences example, in Companions constraint checking and are made from base to target by default.



Qualitative Spatial Reasoning about Sketch Maps

AI Magazine

Sketch maps are an important spatial representation used in many geospatial-reasoning tasks. This article describes techniques we have developed that enable software to perform humanlike reasoning about sketch maps. We illustrate the utility of these techniques in the context of nuSketch Battlespace, a research system that has been successfully used in a variety of experiments. After an overview of the nuSketch approach and nuSketch Battlespace, we outline the representations of glyphs and sketches and the nuSketch spatial reasoning architecture. We describe the use of qualitative topology and Voronoi diagrams to construct spatial representations, and explain how these facilities are combined with analogical reasoning to provide a simple form of enemy intent hypothesis generation.


Qualitative Spatial Reasoning about Sketch Maps

AI Magazine

Sketch maps are an important spatial representation used in many geospatial-reasoning tasks. This article describes techniques we have developed that enable software to perform humanlike reasoning about sketch maps. We illustrate the utility of these techniques in the context of nuSketch Battlespace, a research system that has been successfully used in a variety of experiments. After an overview of the nuSketch approach and nuSketch Battlespace, we outline the representations of glyphs and sketches and the nuSketch spatial reasoning architecture. We describe the use of qualitative topology and Voronoi diagrams to construct spatial representations, and explain how these facilities are combined with analogical reasoning to provide a simple form of enemy intent hypothesis generation.