Collaborating Authors

New Polynomial Classes for Logic-Based Abduction

AAAI Conferences

We address the problem of propositional logic-based abduction, i.e., the problem of searching for a best explanation for a given propositional observation according to a given propositional knowledge base. We give a general algorithm, based on the notion of projection; then we study restrictions over the representations of the knowledge base and of the query, and find new polynomial classes of abduction problems.

Artificial Intelligence Enabled Software Defined Networking: A Comprehensive Overview Artificial Intelligence

Software defined networking (SDN) represents a promising networking architecture that combines central management and network programmability. SDN separates the control plane from the data plane and moves the network management to a central point, called the controller, that can be programmed and used as the brain of the network. Recently, the research community has showed an increased tendency to benefit from the recent advancements in the artificial intelligence (AI) field to provide learning abilities and better decision making in SDN. In this study, we provide a detailed overview of the recent efforts to include AI in SDN. Our study showed that the research efforts focused on three main sub-fields of AI namely: machine learning, meta-heuristics and fuzzy inference systems. Accordingly, in this work we investigate their different application areas and potential use, as well as the improvements achieved by including AI-based techniques in the SDN paradigm.

Artificial Intelligence : from Research to Application ; the Upper-Rhine Artificial Intelligence Symposium (UR-AI 2019) Artificial Intelligence

The TriRhenaTech alliance universities and their partners presented their competences in the field of artificial intelligence and their cross-border cooperations with the industry at the tri-national conference 'Artificial Intelligence : from Research to Application' on March 13th, 2019 in Offenburg. The TriRhenaTech alliance is a network of universities in the Upper Rhine Trinational Metropolitan Region comprising of the German universities of applied sciences in Furtwangen, Kaiserslautern, Karlsruhe, and Offenburg, the Baden-Wuerttemberg Cooperative State University Loerrach, the French university network Alsace Tech (comprised of 14 'grandes \'ecoles' in the fields of engineering, architecture and management) and the University of Applied Sciences and Arts Northwestern Switzerland. The alliance's common goal is to reinforce the transfer of knowledge, research, and technology, as well as the cross-border mobility of students.

Tackling Climate Change with Machine Learning Artificial Intelligence

Climate change is one of the greatest challenges facing humanity, and we, as machine learning experts, may wonder how we can help. Here we describe how machine learning can be a powerful tool in reducing greenhouse gas emissions and helping society adapt to a changing climate. From smart grids to disaster management, we identify high impact problems where existing gaps can be filled by machine learning, in collaboration with other fields. Our recommendations encompass exciting research questions as well as promising business opportunities. We call on the machine learning community to join the global effort against climate change.