Beating the Defense: Using Plan Recognition to Inform Learning Agents

AAAI Conferences

In this paper, we investigate the hypothesis that plan recognition can significantly improve the performance of a case-based reinforcement learner in an adversarial action selection task. Our environment is a simplification of an American football game. The performance task is to control the behavior of a quarterback in a pass play, where the goal is to maximize yardage gained. Plan recognition focuses on predicting the play of the defensive team. We modeled plan recognition as an unsupervised learning task, and conducted a lesion study. We found that plan recognition was accurate, and that it significantly improved performance. More generally, our studies show that plan recognition reduced the dimensionality of the state space, which allowed learning to be conducted more effectively. We describe the algorithms, explain the reasons for performance improvement, and also describe a further empirical comparison that highlights the utility of plan recognition for this task.

A comparative study of artificial intelligence and human doctors for the purpose of triage and diagnosis Artificial Intelligence

Online symptom checkers have significant potential to improve patient care, however their reliability and accuracy remain variable. We hypothesised that an artificial intelligence (AI) powered triage and diagnostic system would compare favourably with human doctors with respect to triage and diagnostic accuracy. We performed a prospective validation study of the accuracy and safety of an AI powered triage and diagnostic system. Identical cases were evaluated by both an AI system and human doctors. Differential diagnoses and triage outcomes were evaluated by an independent judge, who was blinded from knowing the source (AI system or human doctor) of the outcomes. Independently of these cases, vignettes from publicly available resources were also assessed to provide a benchmark to previous studies and the diagnostic component of the MRCGP exam. Overall we found that the Babylon AI powered Triage and Diagnostic System was able to identify the condition modelled by a clinical vignette with accuracy comparable to human doctors (in terms of precision and recall). In addition, we found that the triage advice recommended by the AI System was, on average, safer than that of human doctors, when compared to the ranges of acceptable triage provided by independent expert judges, with only a minimal reduction in appropriateness.

A Generalized Multidimensional Evaluation Framework for Player Goal Recognition

AAAI Conferences

Recent years have seen a growing interest in player modeling, which supports the creation of player-adaptive digital games. A central problem of player modeling is goal recognition, which aims to recognize players’ intentions from observable gameplay behaviors. Player goal recognition offers the promise of enabling games to dynamically adjust challenge levels, perform procedural content generation, and create believable NPC interactions. A growing body of work is investigating a wide range of machine learning-based goal recognition models. In this paper, we introduce GOALIE, a multidimensional framework for evaluating player goal recognition models. The framework integrates multiple metrics for player goal recognition models, including two novel metrics, n-early convergence rate and standardized convergence point . We demonstrate the application of the GOALIE framework with the evaluation of several player goal recognition models, including Markov logic network-based, deep feedforward neural network-based, and long short-term memory network-based goal recognizers on two different educational games. The results suggest that GOALIE effectively captures goal recognition behaviors that are key to next-generation player modeling.

Scheduling a Dynamic Aircraft Repair Shop with Limited Repair Resources

Journal of Artificial Intelligence Research

We address a dynamic repair shop scheduling problem in the context of military aircraft fleet management where the goal is to maintain a full complement of aircraft over the long-term. A number of flights, each with a requirement for a specific number and type of aircraft, are already scheduled over a long horizon. We need to assign aircraft to flights and schedule repair activities while considering the flights requirements, repair capacity, and aircraft failures. The number of aircraft awaiting repair dynamically changes over time due to failures and it is therefore necessary to rebuild the repair schedule online. To solve the problem, we view the dynamic repair shop as successive static repair scheduling sub-problems over shorter time periods. We propose a complete approach based on the logic-based Benders decomposition to solve the static sub-problems, and design different rescheduling policies to schedule the dynamic repair shop. Computational experiments demonstrate that the Benders model is able to find and prove optimal solutions on average four times faster than a mixed integer programming model. The rescheduling approach having both aspects of scheduling over a longer horizon and quickly adjusting the schedule increases aircraft available in the long term by 10% compared to the approaches having either one of the aspects alone.

Most Relevant Explanation in Bayesian Networks

AAAI Conferences

A major inference task in Bayesian networks is explaining why some variables are observed in their particular states using a set of target variables. Existing methods for solving this problem often generate explanations that are either too simple (underspecified) or too complex (overspecified). In this paper, we introduce a method called Most Relevant Explanation (MRE) which finds a partial instantiation of the target variables that maximizes the generalized Bayes factor (GBF) as the best explanation for the given evidence. Our study shows that GBF has several theoretical properties that enable MRE to automatically identify the most relevant target variables in forming its explanation. In particular, conditional Bayes factor (CBF), defined as the GBF of a new explanation conditioned on an existing explanation, provides a soft measure on the degree of relevance of the variables in the new explanation in explaining the evidence given the existing explanation. As a result, MRE is able to automatically prune less relevant variables from its explanation. We also show that CBF is able to capture well the explaining-away phenomenon that is often represented in Bayesian networks. Moreover, we define two dominance relations between the candidate solutions and use the relations to generalize MRE to find a set of top explanations that is both diverse and representative. Case studies on several benchmark diagnostic Bayesian networks show that MRE is often able to find explanatory hypotheses that are not only precise but also concise.