Collaborating Authors

Error fix for long-lived qubits brings quantum computers nearer

New Scientist

Useful quantum computers are one step closer, thanks to the latest demonstration of a technique designed to stop them making mistakes. Quantum computers store information as quantum bits, or qubits. Unlike binary bits, which store a 0 or a 1, qubits can hold a mixture of both states at the same time, boosting their computing potential for certain types of problems. But qubits are fragile – their quantum nature means they can't hold data for long before errors creep in. So researchers wanting to build large-scale computers invented quantum error correction (QEC).

The Era of Quantum Computing Is Here. Outlook: Cloudy


After decades of heavy slog with no promise of success, quantum computing is suddenly buzzing with almost feverish excitement and activity. Nearly two years ago, IBM made a quantum computer available to the world: the 5-quantum-bit (qubit) resource they now call (a little awkwardly) the IBM Q experience. That seemed more like a toy for researchers than a way of getting any serious number crunching done. But 70,000 users worldwide have registered for it, and the qubit count in this resource has now quadrupled. In the past few months, IBM and Intel have announced that they have made quantum computers with 50 and 49 qubits, respectively, and Google is thought to have one waiting in the wings. "There is a lot of energy in the community, and the recent progress is immense," said physicist Jens Eisert of the Free University of Berlin.

Google: We'll build this 'useful' quantum computer by the end of the decade


Google has unveiled its new Quantum AI campus in Santa Barbara, California, where engineers and scientists will be working on its first commercial quantum computer – but that will probably be a decade way. The new campus has a focus on both software and hardware. On the latter front, these include its first quantum data center, quantum hardware research labs, and Google's own quantum processor chip fabrication facilities, says Erik Lucero, lead engineer for Google Quantum AI in a blogpost. Quantum computers offer great promise for cryptography and optimization problems. ZDNet explores what quantum computers will and won't be able to do, and the challenges we still face.

CES 2018: Intel's 49-Qubit Chip Shoots for Quantum Supremacy

IEEE Spectrum Robotics

Intel has passed a key milestone while running alongside Google and IBM in the marathon to build quantum computing systems. The tech giant has unveiled a superconducting quantum test chip with 49 qubits: enough qubits to possibly enable quantum computing that begins to exceed the practical limits of modern classical computers.

We've figured out how to ensure quantum computers can be trusted

New Scientist

What good is a fast computer if you can't trust it? Thanks to half a century of research on getting computers to do their job correctly even in the presence of mechanical errors, our modern machines tend to be pretty reliable. Unfortunately, the laws of quantum mechanics render all that research useless for quantum computers, the sheer complexity of which leaves them prone to errors. Now, we finally have the first demonstration of a quantum program that can detect data corruption. Two research groups – one from the University of Maryland and Georgia Tech and the other from IBM – have demonstrated the same quantum error-detecting program, albeit implemented with different hardware.