Goto

Collaborating Authors

The Challenge of Crafting Intelligible Intelligence

arXiv.org Artificial Intelligence

Since Artificial Intelligence (AI) software uses techniques like deep lookahead search and stochastic optimization of huge neural networks to fit mammoth datasets, it often results in complex behavior that is difficult for people to understand. Yet organizations are deploying AI algorithms in many mission-critical settings. To trust their behavior, we must make AI intelligible, either by using inherently interpretable models or by developing new methods for explaining and controlling otherwise overwhelmingly complex decisions using local approximation, vocabulary alignment, and interactive explanation. This paper argues that intelligibility is essential, surveys recent work on building such systems, and highlights key directions for research.


Techniques for Interpretable Machine Learning

Communications of the ACM

Machine learning is progressing at an astounding rate, powered by complex models such as ensemble models and deep neural networks (DNNs). These models have a wide range of real-world applications, such as movie recommendations of Netflix, neural machine translation of Google, and speech recognition of Amazon Alexa. Despite the successes, machine learning has its own limitations and drawbacks. The most significant one is the lack of transparency behind their behaviors, which leaves users with little understanding of how particular decisions are made by these models. Consider, for instance, an advanced self-driving car equipped with various machine learning algorithms does not brake or decelerate when confronting a stopped firetruck. This unexpected behavior may frustrate and confuse users, making them wonder why. Even worse, the wrong decisions could cause severe consequences if the car is driving at highway speeds and might ultimately crash into the firetruck. The concerns about the black-box nature of complex models have hampered their further applications in our society, especially in those critical decision-making domains like self-driving cars. Interpretable machine learning would be an effective tool to mitigate these problems. It gives machine learning models the ability to explain or to present their behaviors in understandable terms to humans,10 which is called interpretability or explainability and we use them interchangeably in this article. Interpretability would be an indispensable part for machine learning models in order to better serve human beings and bring benefits to society. For end users, explanation will increase their trust and encourage them to adopt machine learning systems. From the perspective of machine learning system developers and researchers, the provided explanation can help them better understand the problem, the data and why a model might fail, and eventually increase the system safety. Thus, there is a growing interest among the academic and industrial community in interpreting machine learning models and gaining insights into their working mechanisms.


Navigating the Sea of Explainability - WebSystemer.no

#artificialintelligence

This article is coauthored by Joy Rimchala and Shir Meir Lador. Rapid adoption of complex machine learning (ML) models in recent years has brought with it a new challenge for today's companies: how to interpret, understand, and explain the reasoning behind these complex models' predictions. Treating complex ML systems as trustworthy black boxes without sanity checking has led to some disastrous outcomes, as evidenced by recent disclosures of gender and racial biases in GenderShades¹. As ML-assisted predictions integrate more deeply into high-stakes decision-making, such as medical diagnoses, recidivism risk prediction, loan approval processes, etc., knowing the root causes of an ML prediction becomes crucial. If we know that certain model predictions reflect bias and are not aligned with our best knowledge and societal values (such as an equal opportunity policy or outcome equity), we can detect these undesirable ML defects, prevent the deployment of such ML systems, and correct model defects.


Explaining Explanations: An Approach to Evaluating Interpretability of Machine Learning

arXiv.org Machine Learning

There has recently been a surge of work in explanatory artificial intelligence (XAI). This research area tackles the important problem that complex machines and algorithms often cannot provide insights into their behavior and thought processes. XAI allows users and parts of the internal system to be more transparent, providing explanations of their decisions in some level of detail. These explanations are important to ensure algorithmic fairness, identify potential bias/problems in the training data, and to ensure that the algorithms perform as expected. However, explanations produced by these systems is neither standardized nor systematically assessed. In an effort to create best practices and identify open challenges, we provide our definition of explainability and show how it can be used to classify existing literature. We discuss why current approaches to explanatory methods especially for deep neural networks are insufficient. Finally, based on our survey, we conclude with suggested future research directions for explanatory artificial intelligence.


Explaining Explanations in AI

arXiv.org Artificial Intelligence

Recent work on interpretability in machine learning and AI has focused on the building of simplified models that approximate the true criteria used to make decisions. These models are a useful pedagogical device for teaching trained professionals how to predict what decisions will be made by the complex system, and most importantly how the system might break. However, when considering any such model it's important to remember Box's maxim that "All models are wrong but some are useful." We focus on the distinction between these models and explanations in philosophy and sociology. These models can be understood as a "do it yourself kit" for explanations, allowing a practitioner to directly answer "what if questions" or generate contrastive explanations without external assistance. Although a valuable ability, giving these models as explanations appears more difficult than necessary, and other forms of explanation may not have the same trade-offs. We contrast the different schools of thought on what makes an explanation, and suggest that machine learning might benefit from viewing the problem more broadly.