Towards Diagnosing Hybrid Systems

AAAI Conferences

This paper reports on the findings of an ongoing project to investigate techniques to diagnose complex dynamical systems that are modeled as hybrid systems. In particular, we examine continuous systems with embedded supervisory controllers which experience abrupt, partial or full failure of component devices. The problem we address is: given a hybrid model of system behavior, a history of executed controller actions, and a history of observations, including an observation of behavior that is aberrant relative to the model of expected behavior, determine what fault occurred to have caused the aberrant behavior. Determining a diagnosis can be cast as a search problem to find the most likely model for the data. Unfortunately, the search space is extremely large. To reduce search space size and to identify an initial set of candidate diagnoses, we propose to exploit techniques originally applied to qualitative diagnosis of continuous systems. We refine these diagnoses using parameter estimation and model fitting techniques. As a motivating case study, we have examined the problem of diagnosing NASA's Sprint AERCam, a small spherical robotic camera unit with 12 thrusters that enable both linear and rotational motion.

Vertex nomination schemes for membership prediction Machine Learning

Suppose that a graph is realized from a stochastic block model where one of the blocks is of interest, but many or all of the vertices' block labels are unobserved. The task is to order the vertices with unobserved block labels into a ``nomination list'' such that, with high probability, vertices from the interesting block are concentrated near the list's beginning. We propose several vertex nomination schemes. Our basic - but principled - setting and development yields a best nomination scheme (which is a Bayes-Optimal analogue), and also a likelihood maximization nomination scheme that is practical to implement when there are a thousand vertices, and which is empirically near-optimal when the number of vertices is small enough to allow comparison to the best nomination scheme. We then illustrate the robustness of the likelihood maximization nomination scheme to the modeling challenges inherent in real data, using examples which include a social network involving human trafficking, the Enron Graph, a worm brain connectome and a political blog network.

Bayesian Modeling of Facial Similarity

Neural Information Processing Systems

In previous work [6, 9, 10], we advanced a new technique for direct visual matching of images for the purposes of face recognition and image retrieval, using a probabilistic measure of similarity based primarily on a Bayesian (MAP) analysis of image differences, leadingto a "dual" basis similar to eigenfaces [13]. The performance advantage of this probabilistic matching technique over standard Euclidean nearest-neighbor eigenface matching was recently demonstrated using results from DARPA's 1996 "FERET" face recognition competition, in which this probabilistic matching algorithm was found to be the top performer. We have further developed a simple method of replacing the costly compution of nonlinear (online) Bayesian similarity measures by the relatively inexpensive computation of linear (offline) subspace projections and simple (online) Euclidean norms, thus resulting in a significant computational speedup for implementation with very large image databases as typically encountered in real-world applications.

Temporal Topic Analysis with Endogenous and Exogenous Processes

AAAI Conferences

We consider the problem of modeling temporal textual data taking endogenous and exogenous processes into account. Such text documents arise in real world applications, including job advertisements and economic news articles, which are influenced by the fluctuations of the general economy. We propose a hierarchical Bayesian topic model which imposes a "group-correlated" hierarchical structure on the evolution of topics over time incorporating both processes, and show that this model can be estimated from Markov chain Monte Carlo sampling methods. We further demonstrate that this model captures the intrinsic relationships between the topic distribution and the time-dependent factors, and compare its performance with latent Dirichlet allocation (LDA) and two other related models. The model is applied to two collections of documents to illustrate its empirical performance: online job advertisements from DirectEmployers Association and journalists' postings on

Bayesian Non-Homogeneous Markov Models via Polya-Gamma Data Augmentation with Applications to Rainfall Modeling Machine Learning

Discrete-time hidden Markov models are a broadly useful class of latent-variable models with applications in areas such as speech recognition, bioinformatics, and climate data analysis. It is common in practice to introduce temporal non-homogeneity into such models by making the transition probabilities dependent on time-varying exogenous input variables via a multinomial logistic parametrization. We extend such models to introduce additional non-homogeneity into the emission distribution using a generalized linear model (GLM), with data augmentation for sampling-based inference. However, the presence of the logistic function in the state transition model significantly complicates parameter inference for the overall model, particularly in a Bayesian context. To address this we extend the recently-proposed Polya-Gamma data augmentation approach to handle non-homogeneous hidden Markov models (NHMMs), allowing the development of an efficient Markov chain Monte Carlo (MCMC) sampling scheme. We apply our model and inference scheme to 30 years of daily rainfall in India, leading to a number of insights into rainfall-related phenomena in the region. Our proposed approach allows for fully Bayesian analysis of relatively complex NHMMs on a scale that was not possible with previous methods. Software implementing the methods described in the paper is available via the R package NHMM.