Collaborating Authors

Random Hypervolume Scalarizations for Provable Multi-Objective Black Box Optimization Machine Learning

Single-objective black box optimization (also known as zeroth-order optimization) is the process of minimizing a scalar objective $f(x)$, given evaluations at adaptively chosen inputs $x$. In this paper, we consider multi-objective optimization, where $f(x)$ outputs a vector of possibly competing objectives and the goal is to converge to the Pareto frontier. Quantitatively, we wish to maximize the standard hypervolume indicator metric, which measures the dominated hypervolume of the entire set of chosen inputs. In this paper, we introduce a novel scalarization function, which we term the hypervolume scalarization, and show that drawing random scalarizations from an appropriately chosen distribution can be used to efficiently approximate the hypervolume indicator metric. We utilize this connection to show that Bayesian optimization with our scalarization via common acquisition functions, such as Thompson Sampling or Upper Confidence Bound, provably converges to the whole Pareto frontier by deriving tight hypervolume regret bounds on the order of $\widetilde{O}(\sqrt{T})$. Furthermore, we highlight the general utility of our scalarization framework by showing that any provably convergent single-objective optimization process can be effortlessly converted to a multi-objective optimization process with provable convergence guarantees.

Approximation-Guided Evolutionary Multi-Objective Optimization

AAAI Conferences

Multi-objective optimization problems arise frequently in applications but can often only be solved approximately by heuristic approaches. Evolutionary algorithms have been widely used to tackle multi-objective problems. These algorithms use different measures to ensure diversity in the objective space but are not guided by a formal notion of approximation. We present a new framework of an evolutionary algorithm for multi-objective optimization that allows to work with a formal notion of approximation. Our experimental results show that our approach outperforms state-of-the-art evolutionary algorithms in terms of the quality of the approximation that is obtained in particular for problems with many objectives.

Hypervolume-based Multi-objective Bayesian Optimization with Student-t Processes Machine Learning

Student-$t$ processes have recently been proposed as an appealing alternative non-parameteric function prior. They feature enhanced flexibility and predictive variance. In this work the use of Student-$t$ processes are explored for multi-objective Bayesian optimization. In particular, an analytical expression for the hypervolume-based probability of improvement is developed for independent Student-$t$ process priors of the objectives. Its effectiveness is shown on a multi-objective optimization problem which is known to be difficult with traditional Gaussian processes.

Single-Solution Hypervolume Maximization and its use for Improving Generalization of Neural Networks Machine Learning

This paper introduces the hypervolume maximization with a single solution as an alternative to the mean loss minimization. The relationship between the two problems is proved through bounds on the cost function when an optimal solution to one of the problems is evaluated on the other, with a hyperparameter to control the similarity between the two problems. This same hyperparameter allows higher weight to be placed on samples with higher loss when computing the hypervolume's gradient, whose normalized version can range from the mean loss to the max loss. An experiment on MNIST with a neural network is used to validate the theory developed, showing that the hypervolume maximization can behave similarly to the mean loss minimization and can also provide better performance, resulting on a 20% reduction of the classification error on the test set.

Fast Exact Computation of Expected HyperVolume Improvement Machine Learning

In multi-objective Bayesian optimization and surrogate-based evolutionary algorithms, Expected HyperVolume Improvement (EHVI) is widely used as the acquisition function to guide the search approaching the Pareto front. This paper focuses on the exact calculation of EHVI given a nondominated set, for which the existing exact algorithms are complex and can be inefficient for problems with more than three objectives. Integrating with different decomposition algorithms, we propose a new method for calculating the integral in each decomposed high-dimensional box in constant time. We develop three new exact EHVI calculation algorithms based on three region decomposition methods. The first grid-based algorithm has a complexity of $O(m\cdot n^m)$ with $n$ denoting the size of the nondominated set and $m$ the number of objectives. The Walking Fish Group (WFG)-based algorithm has a worst-case complexity of $O(m\cdot 2^n)$ but has a better average performance. These two can be applied for problems with any $m$. The third CLM-based algorithm is only for $m=3$ and asymptotically optimal with complexity $\Theta(n\log{n})$. Performance comparison results show that all our three algorithms are at least twice faster than the state-of-the-art algorithms with the same decomposition methods. When $m>3$, our WFG-based algorithm can be over $10^2$ faster than the corresponding existing algorithms. Our algorithm is demonstrated in an example involving efficient multi-objective material design with Bayesian optimization.