Goto

Collaborating Authors

Large-Scale Kernel Methods for Independence Testing

arXiv.org Machine Learning

Representations of probability measures in reproducing kernel Hilbert spaces provide a flexible framework for fully nonparametric hypothesis tests of independence, which can capture any type of departure from independence, including nonlinear associations and multivariate interactions. However, these approaches come with an at least quadratic computational cost in the number of observations, which can be prohibitive in many applications. Arguably, it is exactly in such large-scale datasets that capturing any type of dependence is of interest, so striking a favourable tradeoff between computational efficiency and test performance for kernel independence tests would have a direct impact on their applicability in practice. In this contribution, we provide an extensive study of the use of large-scale kernel approximations in the context of independence testing, contrasting block-based, Nystrom and random Fourier feature approaches. Through a variety of synthetic data experiments, it is demonstrated that our novel large scale methods give comparable performance with existing methods whilst using significantly less computation time and memory.


Equivalence of distance-based and RKHS-based statistics in hypothesis testing

arXiv.org Machine Learning

We provide a unifying framework linking two classes of statistics used in two-sample and independence testing: on the one hand, the energy distances and distance covariances from the statistics literature; on the other, maximum mean discrepancies (MMD), that is, distances between embeddings of distributions to reproducing kernel Hilbert spaces (RKHS), as established in machine learning. In the case where the energy distance is computed with a semimetric of negative type, a positive definite kernel, termed distance kernel, may be defined such that the MMD corresponds exactly to the energy distance. Conversely, for any positive definite kernel, we can interpret the MMD as energy distance with respect to some negative-type semimetric. This equivalence readily extends to distance covariance using kernels on the product space. We determine the class of probability distributions for which the test statistics are consistent against all alternatives. Finally, we investigate the performance of the family of distance kernels in two-sample and independence tests: we show in particular that the energy distance most commonly employed in statistics is just one member of a parametric family of kernels, and that other choices from this family can yield more powerful tests.


A Kernel Statistical Test of Independence

Neural Information Processing Systems

Although kernel measures of independence have been widely applied in machine learning (notably in kernel ICA), there is as yet no method to determine whether they have detected statistically significant dependence. We provide a novel test of the independence hypothesis for one particular kernel independence measure, the Hilbert-Schmidt independence criterion (HSIC).


A Kernel Statistical Test of Independence

Neural Information Processing Systems

Although kernel measures of independence have been widely applied in machine learning (notably in kernel ICA), there is as yet no method to determine whether they have detected statistically significant dependence. We provide a novel test of the independence hypothesis for one particular kernel independence measure, the Hilbert-Schmidt independence criterion (HSIC).