This start-up is building a humanoid robot that could soon be delivering packages to your door

#artificialintelligence

So far, Agility Robotics has sold three Cassie robots (University of Michigan is a customer, for example) and has sales for another three in progress. The goal is to sell another six Cassie robots, "so optimistically 12 customers total for the entire production run of Cassie," Shelton tells CNBC Make It. "That is obviously, though, a relatively compact market, and is not why we're doing the company," says Shelton, in an interview with CNBC Make It. Indeed, the next generation of the company's legged robots will also have arms, says Shelton. And one target use for the more humanoid robot will be carrying packages from delivery trucks to your door. Shelton says his house is a perfect example of how a legged robot would assist in delivery.



Elon Musk, DeepMind and AI researchers promise not to develop robot killing machines

The Independent - Tech

Elon Musk and many of the world's most respected artificial intelligence researchers have committed not to build autonomous killer robots. The public pledge not to make any "lethal autonomous weapons" comes amid increasing concern about how machine learning and AI will be used on the battlefields of the future. The signatories to the new pledge – which includes the founders of DeepMind, a founder of Skype, and leading academics from across the industry – promise that they will not allow the technology they create to be used to help create killing machines. The I.F.O. is fuelled by eight electric engines, which is able to push the flying object to an estimated top speed of about 120mph. The giant human-like robot bears a striking resemblance to the military robots starring in the movie'Avatar' and is claimed as a world first by its creators from a South Korean robotic company Waseda University's saxophonist robot WAS-5, developed by professor Atsuo Takanishi and Kaptain Rock playing one string light saber guitar perform jam session A man looks at an exhibit entitled'Mimus' a giant industrial robot which has been reprogrammed to interact with humans during a photocall at the new Design Museum in South Kensington, London Electrification Guru Dr. Wolfgang Ziebart talks about the electric Jaguar I-PACE concept SUV before it was unveiled before the Los Angeles Auto Show in Los Angeles, California, U.S The Jaguar I-PACE Concept car is the start of a new era for Jaguar.


Deep Q-Learning for Same-Day Delivery with a Heterogeneous Fleet of Vehicles and Drones

arXiv.org Machine Learning

In this paper, we consider same-day delivery with a heterogeneous fleet of vehicles and drones. Customers make delivery requests over the course of the day and the dispatcher dynamically dispatches vehicles and drones to deliver the goods to customers before their delivery deadline. Vehicles can deliver multiple packages in one route but travel relatively slowly due to the urban traffic. Drones travel faster, but they have limited capacity and require charging or battery swaps. To exploit the different strengths of the fleets, we propose a deep Q-learning approach. Our method learns the value of assigning a new customer to either drones or vehicles as well as the option to not offer service at all. To aid feature selection, we present an analytical analysis that demonstrates the role that different types of information have on the value function and decision making. In a systematic computational analysis, we show the superiority of our policy compared to benchmark policies and the effectiveness of our deep Q-learning approach.


Efficient Large-Scale Multi-Drone Delivery Using Transit Networks

arXiv.org Artificial Intelligence

We consider the problem of controlling a large fleet of drones to deliver packages simultaneously across broad urban areas. To conserve their limited flight range, drones can seamlessly hop between and ride on top of public transit vehicles (e.g., buses and trams). We design a novel comprehensive algorithmic framework that strives to minimize the maximum time to complete any delivery. We address the multifaceted complexity of the problem through a two-layer approach. First, the upper layer assigns drones to package delivery sequences with a provably near-optimal polynomial-time task allocation algorithm. Then, the lower layer executes the allocation by periodically routing the fleet over the transit network while employing efficient bounded-suboptimal multi-agent pathfinding techniques tailored to our setting. We present extensive experiments supporting the efficiency of our approach on settings with up to $200$ drones, $5000$ packages, and large transit networks of up to $8000$ stops in San Francisco and the Washington DC area. Our results show that the framework can compute solutions within a few seconds (up to $2$ minutes for the largest settings) on commodity hardware, and that drones travel up to $450 \%$ of their flight range by using public transit.