Collaborating Authors

Graph Kernels: A Survey Machine Learning

Graph kernels have attracted a lot of attention during the last decade, and have evolved into a rapidly developing branch of learning on structured data. During the past 20 years, the considerable research activity that occurred in the field resulted in the development of dozens of graph kernels, each focusing on specific structural properties of graphs. Graph kernels have proven successful in a wide range of domains, ranging from social networks to bioinformatics. The goal of this survey is to provide a unifying view of the literature on graph kernels. In particular, we present a comprehensive overview of a wide range of graph kernels. Furthermore, we perform an experimental evaluation of several of those kernels on publicly available datasets, and provide a comparative study. Finally, we discuss key applications of graph kernels, and outline some challenges that remain to be addressed.

A Survey on Graph Kernels Machine Learning

Graph kernels have become an established and widely-used technique for solving classification tasks on graphs. This survey gives a comprehensive overview of techniques for kernel-based graph classification developed in the past 15 years. We describe and categorize graph kernels based on properties inherent to their design, such as the nature of their extracted graph features, their method of computation and their applicability to problems in practice. In an extensive experimental evaluation, we study the classification accuracy of a large suite of graph kernels on established benchmarks as well as new datasets. We compare the performance of popular kernels with several baseline methods and study the effect of applying a Gaussian RBF kernel to the metric induced by a graph kernel. In doing so, we find that simple baselines become competitive after this transformation on some datasets. Moreover, we study the extent to which existing graph kernels agree in their predictions (and prediction errors) and obtain a data-driven categorization of kernels as result. Finally, based on our experimental results, we derive a practitioner's guide to kernel-based graph classification.

Message Passing Graph Kernels Machine Learning

Graph kernels have recently emerged as a promising approach for tackling the graph similarity and learning tasks at the same time. In this paper, we propose a general framework for designing graph kernels. The proposed framework capitalizes on the well-known message passing scheme on graphs. The kernels derived from the framework consist of two components. The first component is a kernel between vertices, while the second component is a kernel between graphs. The main idea behind the proposed framework is that the representations of the vertices are implicitly updated using an iterative procedure. Then, these representations serve as the building blocks of a kernel that compares pairs of graphs. We derive four instances of the proposed framework, and show through extensive experiments that these instances are competitive with state-of-the-art methods in various tasks.

Matching Node Embeddings for Graph Similarity

AAAI Conferences

Graph kernels have emerged as a powerful tool for graph comparison. Most existing graph kernels focus on local properties of graphs and ignore global structure. In this paper, we compare graphs based on their global properties as these are captured by the eigenvectors of their adjacency matrices. We present two algorithms for both labeled and unlabeled graph comparison. These algorithms represent each graph as a set of vectors corresponding to the embeddings of its vertices. The similarity between two graphs is then determined using the Earth Mover's Distance metric. These similarities do not yield a positive semidefinite matrix. To address for this, we employ an algorithm for SVM classification using indefinite kernels. We also present a graph kernel based on the Pyramid Match kernel that finds an approximate correspondence between the sets of vectors of the two graphs. We further improve the proposed kernel using the Weisfeiler-Lehman framework. We evaluate the proposed methods on several benchmark datasets for graph classification and compare their performance to state-of-the-art graph kernels. In most cases, the proposed algorithms outperform the competing methods, while their time complexity remains very attractive.

Graph Invariant Kernels

AAAI Conferences

We introduce a novel kernel that upgrades the Weisfeiler-Lehman and other graph kernels to effectively exploit high-dimensional and continuous vertex attributes. Graphs are first decomposed into subgraphs. Vertices of the subgraphs are then compared by a kernel that combines the similarity of their labels and the similarity of their structural role, using a suitable vertex invariant. By changing this invariant we obtain a family of graph kernels which includes generalizations of Weisfeiler-Lehman, NSPDK, and propagation kernels. We demonstrate empirically that these kernels obtain state-of-the-art results on relational data sets.