2016 Artificial Intelligence (Ai) Market By Technology (Machine Learning, Natural Language Processing, Image Processing, And Speech Recognition), Application & Geography - Global Forecast To 2020 - Research and Markets

#artificialintelligence

DUBLIN--(BUSINESS WIRE)--Research and Markets has announced the addition of the "Artificial Intelligence (Ai) Market By Technology (Machine Learning, Natural Language Processing (Nlp), Image Processing, And Speech Recognition), Application & Geography - Global Forecast To 2020" report to their offering. The author forecasts the artificial intelligence market to grow from USD 419.7 Million in 2014 to USD 5.05 Billion by 2020, at a CAGR of 53.65% from 2015 to 2020. The major factors driving the growth of this market include diversified application areas of AI, improved productivity, and increased level of customer satisfaction. In addition, the rising demand for intelligent systems is expected to propel the growth of the market in the next five years. The scope of this report covers the artificial intelligence market by technology, application, and region.


Artificial Intelligence Market by Technology, Application, & Geography - Global Forecast to 2020

#artificialintelligence

"Diversified application areas are expected to drive the artificial intelligence market" The artificial intelligence market is estimated to grow from USD 419.7 million in 2014 to USD 5.05 billion by 2020, at a CAGR of 53.65% from 2015 to 2020. This growth can be attributed to the factors such as diversified application areas, improved productivity, and increased customer satisfaction. "Machine learning technology to gain maximum traction during the forecast period" The machine learning technology is expected to account for the largest share of the overall AI market duing the forecast period. In addition, due to the increase in demand for AI from the media & advertising and finance sectors, the artificial intelligence market is expected to gain traction in the next five years. The machine learning technology market for the retail, healthcare, law, and oil & gas sectors is also expected to witness growth during the forecast period.


nick lally // art, geography, software » Blog Archive » geographies of software, AAG 2017

#artificialintelligence

A variety of technologies have emerged in the last decade that make it easier and cheaper than ever before to make representations of everyday mobile embodiment. Increasing numbers of people are quantifying and self-tracking their everyday lives recording behavioural, biological and environmental data (Beer, 2016; Neff & Nafus, 2016) using a variety of technologies, for example: • lightweight wearable cameras such as the GoPro allowing users to record footage of their most banal everyday activities; • devices such as the Fitbit and Apple Watch bringing continuous physiological monitoring out of the medical realm and into mainstream culture; • apps like Strava allowing people to quantify their cycling, running and walking activities; • lightweight devices for measuring brain activity (EEG) and stimulation (EDA) becoming sufficiently robust and discreet to be used in non-lab environments. None of the underlying technologies are novel, but as they are made accessible in cheaper and more user-friendly packages, new techniques and sources of data are becoming more readily available for geographical analysis. Engagement with these technologies has created a rapidly expanding area of investigation within geography. The emergence of the quantified-self poses both opportunities and dilemmas for geographical thought. We wish to move past simplistic protests that dismiss such technology as offering another take on Haraway's (1988) 'god trick', presenting partial, and highly situated data as objective truth. Instead, this session will build on the potential identified by Delyser and Sui (2013) to take more inventive approaches toward mobile methods. The focus will be on how these technologies can be engaged with by critical geographers to bring new perspectives to their analysis of everyday embodiment.


Sea Hero Quest: how a new mobile game can help us understand dementia

The Guardian

If there's one thing that I've learned in the few short years that I've been a fully-fledged scientist, it's that time is one of the most valuable commodities that you can give a researcher. In all its myriad forms, time is invaluable to the scientific process – time to develop ideas, time to write grants. The time that you need to run an experiment. Critically, the time that participants are willing to give you in the pursuit of knowledge. It's a precious thing, for everyone involved.