Beating Common Sense into Interactive Applications

AI Magazine

A longstanding dream of artificial intelligence has been to put commonsense knowledge into computers--enabling machines to reason about everyday life. Some projects, such as Cyc, have begun to amass large collections of such knowledge. However, it is widely assumed that the use of common sense in interactive applications will remain impractical for years, until these collections can be considered sufficiently complete and commonsense reasoning sufficiently robust. Recently, at the Massachusetts Institute of Technology's Media Laboratory, we have had some success in applying commonsense knowledge in a number of intelligent interface agents, despite the admittedly spotty coverage and unreliable inference of today's commonsense knowledge systems. This article surveys several of these applications and reflects on interface design principles that enable successful use of commonsense knowledge.


Beating Common Sense into Interactive Applications

AI Magazine

A long-standing dream of artificial intelligence has been to put commonsense knowledge into computers -- enabling machines to reason about everyday life. Some projects, such as Cyc, have begun to amass large collections of such knowledge. However, it is widely assumed that the use of common sense in interactive applications will remain impractical for years, until these collections can be considered sufficiently complete and commonsense reasoning sufficiently robust. Recently, at the Massachusetts Institute of Technology's Media Laboratory, we have had some success in applying commonsense knowledge in a number of intelligent interface agents, despite the admittedly spotty coverage and unreliable inference of today's commonsense knowledge systems. This article surveys several of these applications and reflects on interface design principles that enable successful use of commonsense knowledge.


Preface

AAAI Conferences

A growing number of research projects now seek to use these knowledge collections in a wide variety of applications, including computer vision, speech processing, robotics, dialogue and text understanding, and apply them to real-world tasks such as healthcare and finance, where brittleness is unacceptable. At the same time, new application domains are giving fresh insights into desiderata for common sense reasoners and guidance for knowledge collection efforts.


Contextual Commonsense Knowledge Acquisition from Social Content by Crowd-Sourcing Explanations

AAAI Conferences

Contextual knowledge is essential in answering questions given specific observations. While recent approaches to building commonsense knowledge basesvia text mining and/or crowdsourcing are successful,contextual knowledge is largely missing. To addressthis gap, this paper presents SocialExplain, a novel approach to acquiring contextual commonsense knowledge from explanations of social content. The acquisition process is broken into two cognitively simple tasks:to identify contextual clues from the given social content, and to explain the content with the clues. An experiment was conducted to show that multiple piecesof contextual commonsense knowledge can be identi-fied from a small number of tweets. Online users verified that 92.45% of the acquired sentences are good,and 95.92% are new sentences compared with existingcrowd-sourced commonsense knowledge bases.


Commonsense Knowledge Extraction Using Concepts Properties

AAAI Conferences

This paper presents a semantically grounded method for extracting commonsense knowledge. First, commonsense rules are identified, e.g., one cannot see imaginary objects. Second, those rules are combined with a basic semantic representation in order to infer commonsense knowledge facts, e.g. one cannot see a flying carpet. Further combinations of semantic relations with inferred commonsense facts are proposed and analyzed. Results show that this novel method is able to extract thousands of commonsense facts with little human interaction and high accuracy.