Collaborating Authors

On the Relationship Between KR Approaches for Explainable Planning Artificial Intelligence

In this paper, we build upon notions from knowledge representation and reasoning (KR) to expand a preliminary logic-based framework that characterizes the model reconciliation problem for explainable planning. We also provide a detailed exposition on the relationship between similar KR techniques, such as abductive explanations and belief change, and their applicability to explainable planning.

On Exploiting Hitting Sets for Model Reconciliation Artificial Intelligence

In human-aware planning, a planning agent may need to provide an explanation to a human user on why its plan is optimal. A popular approach to do this is called model reconciliation, where the agent tries to reconcile the differences in its model and the human's model such that the plan is also optimal in the human's model. In this paper, we present a logic-based framework for model reconciliation that extends beyond the realm of planning. More specifically, given a knowledge base $KB_1$ entailing a formula $\varphi$ and a second knowledge base $KB_2$ not entailing it, model reconciliation seeks an explanation, in the form of a cardinality-minimal subset of $KB_1$, whose integration into $KB_2$ makes the entailment possible. Our approach, based on ideas originating in the context of analysis of inconsistencies, exploits the existing hitting set duality between minimal correction sets (MCSes) and minimal unsatisfiable sets (MUSes) in order to identify an appropriate explanation. However, differently from those works targeting inconsistent formulas, which assume a single knowledge base, MCSes and MUSes are computed over two distinct knowledge bases. We conclude our paper with an empirical evaluation of the newly introduced approach on planning instances, where we show how it outperforms an existing state-of-the-art solver, and generic non-planning instances from recent SAT competitions, for which no other solver exists.

The Emerging Landscape of Explainable AI Planning and Decision Making Artificial Intelligence

In this paper, we provide a comprehensive outline of the different threads of work in Explainable AI Planning (XAIP) that has emerged as a focus area in the last couple of years and contrast that with earlier efforts in the field in terms of techniques, target users, and delivery mechanisms. We hope that the survey will provide guidance to new researchers in automated planning towards the role of explanations in the effective design of human-in-the-loop systems, as well as provide the established researcher with some perspective on the evolution of the exciting world of explainable planning.

Planning with Explanatory Actions: A Joint Approach to Plan Explicability and Explanations in Human-Aware Planning Artificial Intelligence

In this work, we formulate the process of generating explanations as model reconciliation for planning problems as one of planning with explanatory actions. We show that these problems could be better understood within the framework of epistemic planning and that, in fact, most earlier works on explanation as model reconciliation correspond to tractable subsets of epistemic planning problems. We empirically show how our approach is computationally more efficient than existing techniques for explanation generation and also discuss how this particular approach could be extended to capture most of the existing variants of explanation as model reconciliation. We end the paper with a discussion of how this formulation could be extended to generate novel explanatory behaviors.

RADAR-X: An Interactive Interface Pairing Contrastive Explanations with Revised Plan Suggestions Artificial Intelligence

Empowering decision support systems with automated planning has received significant recognition in the planning community. The central idea for such systems is to augment the capabilities of the human-in-the-loop with automated planning techniques and provide timely support to enhance the decision-making experience. In addition to this, an effective decision support system must be able to provide intuitive explanations based on specific queries on proposed decisions to its end users. This makes decision-support systems an ideal test-bed to study the effectiveness of various XAIP techniques being developed in the community. To this end, we present our decision support system RADAR-X that extends RADAR (Grover et al. 2020) by allowing the user to participate in an interactive explanatory dialogue with the system. Specifically, we allow the user to ask for contrastive explanations, wherein the user can try to understand why a specific plan was chosen over an alternative (referred to as the foil). Furthermore, we use the foil raised as evidence for unspecified user preferences and use it to further refine plan suggestions.