Goto

Collaborating Authors

Booth

AAAI Conferences

In Belief Revision the new information is generally accepted, following the principle of primacy of update. In some case this behavior can be criticized and one could require that some new pieces of information can be rejected by the agent because, for instance, of insufficient plausibility. This has given rise to several approaches of non-prioritized Belief Revision. In particular (Hansson et al. 2001) defined credibility-limited revision operators, where a revision is accepted only if the new information is a formula that belongs to a set of credible formulas. They provide several representation theorems in the AGM style. In this work we study credibility-limited revision operators when the information is represented in propositional logic, like in the Katsuno and Mendelzon framework. We propose a set of postulates and a representation theorem for credibility-limited revision operators. Then we explore how to generalize these definitions to the Iterated Belief Revision case, using epistemic states in the Darwiche and Pearl style.


On Limited Non-Prioritised Belief Revision Operators with Dynamic Scope

arXiv.org Artificial Intelligence

The research on non-prioritized revision studies revision operators which do not accept all new beliefs. In this paper, we contribute to this line of research by introducing the concept of dynamic-limited revision, which are revisions expressible by a total preorder over a limited set of worlds. For a belief change operator, we consider the scope, which consists of those beliefs which yield success of revision. We show that for each set satisfying single sentence closure and disjunction completeness there exists a dynamic-limited revision having the union of this set with the beliefs set as scope. We investigate iteration postulates for belief and scope dynamics and characterise them for dynamic-limited revision. As an application, we employ dynamic-limited revision to studying belief revision in the context of so-called inherent beliefs, which are beliefs globally accepted by the agent. This leads to revision operators which we call inherence-limited. We present a representation theorem for inherence-limited revision, and we compare these operators and dynamic-limited revision with the closely related credible-limited revision operators.


Credibility-Limited Revision Operators in Propositional Logic

AAAI Conferences

In Belief Revision the new information is generally accepted, following the principle of primacy of update. In some case this behavior can be criticized and one could require that some new pieces of information can be rejected by the agent because, for instance, of insufficient plausibility. This has given rise to several approaches of non-prioritized Belief Revision. In particular (Hansson et al. 2001) defined credibility-limited revision operators, where a revision is accepted only if the new information is a formula that belongs to a set of credible formulas. They provide several representation theorems in the AGM style. In this work we study credibility-limited revision operators when the information is represented in propositional logic, like in the Katsuno and Mendelzon framework. We propose a set of postulates and a representation theorem for credibility-limited revision operators. Then we explore how to generalize these definitions to the Iterated Belief Revision case, using epistemic states in the Darwiche and Pearl style.


On the use of evidence theory in belief base revision

arXiv.org Artificial Intelligence

This paper deals with belief base revision that is a form of belief change consisting of the incorporation of new facts into an agent's beliefs represented by a finite set of propositional formulas. In the aim to guarantee more reliability and rationality for real applications while performing revision, we propose the idea of credible belief base revision yielding to define two new formula-based revision operators using the suitable tools offered by evidence theory. These operators, uniformly presented in the same spirit of others in [9], stem from consistent subbases maximal with respect to credibility instead of set inclusion and cardinality. Moreover, in between these two extremes operators, evidence theory let us shed some light on a compromise operator avoiding losing initial beliefs to the maximum extent possible. Its idea captures maximal consistent sets stemming from all possible intersections of maximal consistent subbases. An illustration of all these operators and a comparison with others are inverstigated by examples.


A Semantic Characterization ASP Base Revision

Journal of Artificial Intelligence Research

Base revision in classical logic is done by the removal of formulas. Exploiting the non-monotonicity of ASP allows one to propose other revision strategies, namely addition strategy or removal and/or addition strategy. These strategies allow one to define families of rule-based revision operators. The paper presents a semantic characterization of these families of revision operators in terms of answer sets. This semantic characterization allows for equivalently considering the evolution of syntactic logic programs and the evolution of their semantic content. It then studies the logical properties of the proposed operators and gives complexity results.