Enterprise Information Security

#artificialintelligence

Though Information security falls under everyone's responsibility, IT function plays a crucial role in preventing Information security breaches by enhancing/implementing controls with apt technology tools and infrastructure. It is always advisable to go with Org wide third party security assessments through ISO/IEC 27001 standard to get a 360 degree view on current controls and to identify gaps that may adversely impact on organization's security controls.


A Generalized Information Formula as the Bridge between Shannon and Popper

arXiv.org Artificial Intelligence

A generalized information formula related to logical probability and fuzzy set is deduced from the classical information formula. The new information measure accords with to Popper's criterion for knowledge evolution very much. In comparison with square error criterion, the information criterion does not only reflect error of a proposition, but also reflects the particularity of the event described by the proposition. It gives a proposition with less logical probability higher evaluation. The paper introduces how to select a prediction or sentence from many for forecasts and language translations according to the generalized information criterion. It also introduces the rate fidelity theory, which comes from the improvement of the rate distortion theory in the classical information theory by replacing distortion (i.e. average error) criterion with the generalized mutual information criterion, for data compression and communication efficiency. Some interesting conclusions are obtained from the rate-fidelity function in relation to image communication. It also discusses how to improve Popper's theory.


WS98-14-022.pdf

AAAI Conferences

I have been working in the field of information integration since 1990, when I established the SIMS (Single Interface to Multiple Sources) research project at the University of Southern California's Information Sciences Institute. Since that time, the SIMS project has expanded into a group of several coordinated research efforts involving approximately 15 research staff and students, including some of the top researchers in the field today.


Unification of Information Maximization and Minimization

Neural Information Processing Systems

In the present paper, we propose a method to unify information maximization and minimization in hidden units. The information maximization and minimization are performed on two different levels: collectiveand individual level. Thus, two kinds of information: collective and individual information are defined. By maximizing collective information and by minimizing individual information, simple networks can be generated in terms of the number of connections andthe number of hidden units. Obtained networks are expected to give better generalization and improved interpretation of internal representations.


5 Steps to Master Inbound Information

#artificialintelligence

Data on its own has no meaning and serves no purpose. However, data that is presented in context is transformed into information, which can now be understood and used for a purpose. Information that is assembled with a purpose, like a sales contract, becomes content. Let's look at five steps you can take right now to begin your intelligent capture journey.