### undergraduate machine learning 4: Introduction to probability, linear algebra and pagerank

The slides are available here: http://www.cs.ubc.ca/

### AI - The present in the making

For many people, the concept of Artificial Intelligence (AI) is a thing of the future. It is the technology that has yet to be introduced. But Professor Jon Oberlander disagrees. He was quick to point out that AI is not in the future, it is now in the making. He began by mentioning Alexa, Amazon's star product. It is an artificial intelligent personal assistant, which was made popular by Amazon Echo devices. With a plethora of functions, Alexa quickly gained much popularity and fame. It is used for home automation, music streaming, sports updates, messaging and email, and even to order food.

### Predicting human preferences using the block structure of complex social networks

With ever-increasing available data, predicting individuals' preferences and helping them locate the most relevant information has become a pressing need. Understanding and predicting preferences is also important from a fundamental point of view, as part of what has been called a "new" computational social science. Here, we propose a novel approach based on stochastic block models, which have been developed by sociologists as plausible models of complex networks of social interactions. Our model is in the spirit of predicting individuals' preferences based on the preferences of others but, rather than fitting a particular model, we rely on a Bayesian approach that samples over the ensemble of all possible models. We show that our approach is considerably more accurate than leading recommender algorithms, with major relative improvements between 38% and 99% over industry-level algorithms. Besides, our approach sheds light on decision-making processes by identifying groups of individuals that have consistently similar preferences, and enabling the analysis of the characteristics of those groups.

### Efficient Bayesian Learning in Social Networks with Gaussian Estimators

We consider a group of Bayesian agents who try to estimate a state of the world $\theta$ through interaction on a social network. Each agent $v$ initially receives a private measurement of $\theta$: a number $S_v$ picked from a Gaussian distribution with mean $\theta$ and standard deviation one. Then, in each discrete time iteration, each reveals its estimate of $\theta$ to its neighbors, and, observing its neighbors' actions, updates its belief using Bayes' Law. This process aggregates information efficiently, in the sense that all the agents converge to the belief that they would have, had they access to all the private measurements. We show that this process is computationally efficient, so that each agent's calculation can be easily carried out. We also show that on any graph the process converges after at most $2N \cdot D$ steps, where $N$ is the number of agents and $D$ is the diameter of the network. Finally, we show that on trees and on distance transitive-graphs the process converges after $D$ steps, and that it preserves privacy, so that agents learn very little about the private signal of most other agents, despite the efficient aggregation of information. Our results extend those in an unpublished manuscript of the first and last authors.

### A Local Search Approach to Observation Planning with Multiple UAVs

Observation planning for Unmanned Aerial Vehicles (UAVs) is a challenging task as it requires planning trajectories over a large continuous space and with motion models that can not be directly encoded into current planners. Furthermore, realistic problems often require complex objective functions that complicate problem decomposition. In this paper, we propose a local search approach to plan the trajectories of a fleet of UAVs on an observation mission. The strength of the approach lies in its loose coupling with domain specific requirements such as the UAV model or the objective function that are both used as black boxes. Furthermore, the Variable Neighborhood Search (VNS) procedure considered facilitates the adaptation of the algorithm to specific requirements through the addition of new neighborhoods. We demonstrate the feasibility and convenience of the method on a large joint observation task in which a fleet of fixed-wing UAVs maps wildfires over areas of a hundred square kilometers. The approach allows generating plans over tens of minutes for a handful of UAVs in matter of seconds, even when considering very short primitive maneuvers.