Collaborating Authors

Security and Privacy for Artificial Intelligence: Opportunities and Challenges Artificial Intelligence

The increased adoption of Artificial Intelligence (AI) presents an opportunity to solve many socio-economic and environmental challenges; however, this cannot happen without securing AI-enabled technologies. In recent years, most AI models are vulnerable to advanced and sophisticated hacking techniques. This challenge has motivated concerted research efforts into adversarial AI, with the aim of developing robust machine and deep learning models that are resilient to different types of adversarial scenarios. In this paper, we present a holistic cyber security review that demonstrates adversarial attacks against AI applications, including aspects such as adversarial knowledge and capabilities, as well as existing methods for generating adversarial examples and existing cyber defence models. We explain mathematical AI models, especially new variants of reinforcement and federated learning, to demonstrate how attack vectors would exploit vulnerabilities of AI models. We also propose a systematic framework for demonstrating attack techniques against AI applications and reviewed several cyber defences that would protect AI applications against those attacks. We also highlight the importance of understanding the adversarial goals and their capabilities, especially the recent attacks against industry applications, to develop adaptive defences that assess to secure AI applications. Finally, we describe the main challenges and future research directions in the domain of security and privacy of AI technologies.

On Evaluating Adversarial Robustness Machine Learning

Correctly evaluating defenses against adversarial examples has proven to be extremely difficult. Despite the significant amount of recent work attempting to design defenses that withstand adaptive attacks, few have succeeded; most papers that propose defenses are quickly shown to be incorrect. We believe a large contributing factor is the difficulty of performing security evaluations. In this paper, we discuss the methodological foundations, review commonly accepted best practices, and suggest new methods for evaluating defenses to adversarial examples. We hope that both researchers developing defenses as well as readers and reviewers who wish to understand the completeness of an evaluation consider our advice in order to avoid common pitfalls.

Adversarial Examples: Attacks and Defenses for Deep Learning Machine Learning

With rapid progress and great successes in a wide spectrum of applications, deep learning is being applied in many safety-critical environments. However, deep neural networks have been recently found vulnerable to well-designed input samples, called \textit{adversarial examples}. Adversarial examples are imperceptible to human but can easily fool deep neural networks in the testing/deploying stage. The vulnerability to adversarial examples becomes one of the major risks for applying deep neural networks in safety-critical scenarios. Therefore, the attacks and defenses on adversarial examples draw great attention. In this paper, we review recent findings on adversarial examples against deep neural networks, summarize the methods for generating adversarial examples, and propose a taxonomy of these methods. Under the taxonomy, applications and countermeasures for adversarial examples are investigated. We further elaborate on adversarial examples and explore the challenges and the potential solutions.

On the (Statistical) Detection of Adversarial Examples Machine Learning

Machine Learning (ML) models are applied in a variety of tasks such as network intrusion detection or Malware classification. Yet, these models are vulnerable to a class of malicious inputs known as adversarial examples. These are slightly perturbed inputs that are classified incorrectly by the ML model. The mitigation of these adversarial inputs remains an open problem. As a step towards understanding adversarial examples, we show that they are not drawn from the same distribution than the original data, and can thus be detected using statistical tests. Using thus knowledge, we introduce a complimentary approach to identify specific inputs that are adversarial. Specifically, we augment our ML model with an additional output, in which the model is trained to classify all adversarial inputs. We evaluate our approach on multiple adversarial example crafting methods (including the fast gradient sign and saliency map methods) with several datasets. The statistical test flags sample sets containing adversarial inputs confidently at sample sizes between 10 and 100 data points. Furthermore, our augmented model either detects adversarial examples as outliers with high accuracy (> 80%) or increases the adversary's cost - the perturbation added - by more than 150%. In this way, we show that statistical properties of adversarial examples are essential to their detection.

Adversarial Attacks and Defences: A Survey Machine Learning

Deep learning has emerged as a strong and efficient framework that can be applied to a broad spectrum of complex learning problems which were difficult to solve using the traditional machine learning techniques in the past. In the last few years, deep learning has advanced radically in such a way that it can surpass human-level performance on a number of tasks. As a consequence, deep learning is being extensively used in most of the recent day-to-day applications. However, security of deep learning systems are vulnerable to crafted adversarial examples, which may be imperceptible to the human eye, but can lead the model to misclassify the output. In recent times, different types of adversaries based on their threat model leverage these vulnerabilities to compromise a deep learning system where adversaries have high incentives. Hence, it is extremely important to provide robustness to deep learning algorithms against these adversaries. However, there are only a few strong countermeasures which can be used in all types of attack scenarios to design a robust deep learning system. In this paper, we attempt to provide a detailed discussion on different types of adversarial attacks with various threat models and also elaborate the efficiency and challenges of recent countermeasures against them.