Goto

Collaborating Authors



Monitoring Potential Drug Interactions and Reactions via Network Analysis of Instagram User Timelines

arXiv.org Machine Learning

Much recent research aims to identify evidence for Drug-Drug Interactions (DDI) and Adverse Drug reactions (ADR) from the biomedical scientific literature. In addition to this "Bibliome", the universe of social media provides a very promising source of large-scale data that can help identify DDI and ADR in ways that have not been hitherto possible. Given the large number of users, analysis of social media data may be useful to identify under-reported, population-level pathology associated with DDI, thus further contributing to improvements in population health. Moreover, tapping into this data allows us to infer drug interactions with natural products--including cannabis--which constitute an array of DDI very poorly explored by biomedical research thus far. Our goal is to determine the potential of Instagram for public health monitoring and surveillance for DDI, ADR, and behavioral pathology at large. Using drug, symptom, and natural product dictionaries for identification of the various types of DDI and ADR evidence, we have collected ~7000 timelines. We report on 1) the development of a monitoring tool to easily observe user-level timelines associated with drug and symptom terms of interest, and 2) population-level behavior via the analysis of co-occurrence networks computed from user timelines at three different scales: monthly, weekly, and daily occurrences. Analysis of these networks further reveals 3) drug and symptom direct and indirect associations with greater support in user timelines, as well as 4) clusters of symptoms and drugs revealed by the collective behavior of the observed population. This demonstrates that Instagram contains much drug- and pathology specific data for public health monitoring of DDI and ADR, and that complex network analysis provides an important toolbox to extract health-related associations and their support from large-scale social media data.


Reinforcement Learning in Healthcare: A Survey

arXiv.org Artificial Intelligence

As a subfield of machine learning, \emph{reinforcement learning} (RL) aims at empowering one's capabilities in behavioural decision making by using interaction experience with the world and an evaluative feedback. Unlike traditional supervised learning methods that usually rely on one-shot, exhaustive and supervised reward signals, RL tackles with sequential decision making problems with sampled, evaluative and delayed feedback simultaneously. Such distinctive features make RL technique a suitable candidate for developing powerful solutions in a variety of healthcare domains, where diagnosing decisions or treatment regimes are usually characterized by a prolonged and sequential procedure. This survey will discuss the broad applications of RL techniques in healthcare domains, in order to provide the research community with systematic understanding of theoretical foundations, enabling methods and techniques, existing challenges, and new insights of this emerging paradigm. By first briefly examining theoretical foundations and key techniques in RL research from efficient and representational directions, we then provide an overview of RL applications in a variety of healthcare domains, ranging from dynamic treatment regimes in chronic diseases and critical care, automated medical diagnosis from both unstructured and structured clinical data, as well as many other control or scheduling domains that have infiltrated many aspects of a healthcare system. Finally, we summarize the challenges and open issues in current research, and point out some potential solutions and directions for future research.


Rule-Based Expert Systems: The MYCIN Experiments of the Stanford Heuristic Programming Project

Classics

Artificial intelligence, or AI, is largely an experimental science—at least as much progress has been made by building and analyzing programs as by examining theoretical questions. MYCIN is one of several well-known programs that embody some intelligence and provide data on the extent to which intelligent behavior can be programmed. As with other AI programs, its development was slow and not always in a forward direction. But we feel we learned some useful lessons in the course of nearly a decade of work on MYCIN and related programs. In this book we share the results of many experiments performed in that time, and we try to paint a coherent picture of the work. The book is intended to be a critical analysis of several pieces of related research, performed by a large number of scientists. We believe that the whole field of AI will benefit from such attempts to take a detailed retrospective look at experiments, for in this way the scientific foundations of the field will gradually be defined. It is for all these reasons that we have prepared this analysis of the MYCIN experiments.

The complete book in a single file.