Chen, Yi-Chun, Wheeler, Tim Allan, Kochenderfer, Mykel John

Learning Bayesian networks from raw data can help provide insights into the relationships between variables. While real data often contains a mixture of discrete and continuous-valued variables, many Bayesian network structure learning algorithms assume all random variables are discrete. Thus, continuous variables are often discretized when learning a Bayesian network. However, the choice of discretization policy has significant impact on the accuracy, speed, and interpretability of the resulting models. This paper introduces a principled Bayesian discretization method for continuous variables in Bayesian networks with quadratic complexity instead of the cubic complexity of other standard techniques. Empirical demonstrations show that the proposed method is superior to the established minimum description length algorithm. In addition, this paper shows how to incorporate existing methods into the structure learning process to discretize all continuous variables and simultaneously learn Bayesian network structures.

Chen, Yi-Chun, Wheeler, Tim A., Kochenderfer, Mykel J.

Monti, Stefano, Cooper, Gregory F.

In this paper we address the problem of discretization in the context of learning Bayesian networks (BNs) from data containing both continuous and discrete variables. We describe a new technique for *multivariate* discretization, whereby each continuous variable is discretized while taking into account its interaction with the other variables. The technique is based on the use of a Bayesian scoring metric that scores the discretization policy for a continuous variable given a BN structure and the observed data. Since the metric is relative to the BN structure currently being evaluated, the discretization of a variable needs to be dynamically adjusted as the BN structure changes.

Recently developed techniques have made it possible to quickly learn accurate probability density functions from data in low-dimensional continuous space. In particular, mixtures of Gaussians can be fitted to data very quickly using an accelerated EM algorithm that employs multiresolution kd-trees (Moore, 1999). In this paper, we propose a kind of Bayesian networks in which low-dimensional mixtures of Gaussians over different subsets of the domain's variables are combined into a coherent joint probability model over the entire domain. The network is also capable of modeling complex dependencies between discrete variables and continuous variables without requiring discretization of the continuous variables. We present efficient heuristic algorithms for automatically learning these networks from data, and perform comparative experiments illustrated how well these networks model real scientific data and synthetic data. We also briefly discuss some possible improvements to the networks, as well as possible applications.

Joint distributions over many variables are frequently modeled by decomposing them into products of simpler, lower-dimensional conditional distributions, such as in sparsely connected Bayesian networks. However, automatically learning such models can be very computationally expensive when there are many datapoints and many continuous variables with complex nonlinear relationships, particularly when no good ways of decomposing the joint distribution are known a priori. In such situations, previous research has generally focused on the use of discretization techniques in which each continuous variable has a single discretization that is used throughout the entire network. \ In this paper, we present and compare a wide variety of tree-based algorithms for learning and evaluating conditional density estimates over continuous variables. These trees can be thought of as discretizations that vary according to the particular interactions being modeled; however, the density within a given leaf of the tree need not be assumed constant, and we show that such nonuniform leaf densities lead to more accurate density estimation. We have developed Bayesian network structure-learning algorithms that employ these tree-based conditional density representations, and we show that they can be used to practically learn complex joint probability models over dozens of continuous variables from thousands of datapoints. We focus on finding models that are simultaneously accurate, fast to learn, and fast to evaluate once they are learned.