Collaborating Authors

Assisting Scientists with Complex Data Analysis Tasks through Semantic Workflows

AAAI Conferences

To assist scientists in data analysis tasks, we have developed semantic workflow representations that support automatic constraint propagation and reasoning algorithms to manage constraints among the individual workflow steps. Semantic constraints can be used to represent requirements of input datasets as well as best practices for the method represented in a workflow. We demonstrate how the Wings workflow system uses semantic workflows to assist users in creating workflows while validating that the workflows comply with the requirements of the software components and datasets. Wings reasons over semantic workflow representations that consist of both a traditional dataflow graph as well as a network of constraints on the data and components of the workflow.

MORF: A Framework for MOOC Predictive Modeling and Replication At Scale Machine Learning

The MOOC Replication Framework (MORF) is a novel software system for feature extraction, model training/testing, and evaluation of predictive dropout models in Massive Open Online Courses (MOOCs). MORF makes large-scale replication of complex machine-learned models tractable and accessible for researchers, and enables public research on privacy-protected data. It does so by focusing on the high-level operations of an extract-train-test-evaluate workflow, and enables researchers to encapsulate their implementations in portable, fully reproducible software containers which are executed on data with a known schema. MORF's workflow allows researchers to use data in analysis without providing them access to the underlying data directly, preserving privacy and data security. During execution, containers are sandboxed for security and data leakage and parallelized for efficiency, allowing researchers to create and test new models rapidly, on large-scale multi-institutional datasets that were previously inaccessible to most researchers. MORF is provided both as a Python API (the MORF Software), for institutions to use on their own MOOC data) or in a platform-as-a-service (PaaS) model with a web API and a high-performance computing environment (the MORF Platform).

Teaching Big Data Analytics Skills with Intelligent Workflow Systems

AAAI Conferences

We have designed an open and modular course for data science and big data analytics using a workflow paradigm that allows students to easily experience big data through a sophisticated yet easy to use instrument that is an intelligent workflow system. A key aspect of this work is the use of semantic workflows to capture and reuse end-to-end analytic methods that experts would use to analyze big data, and the use of an intelligent workflow system to elaborate the workflow and manage its execution and resulting datasets. Through the exposure of big data analytics in a workflow framework, students will be able to get first-hand experiences with a breadth of big data topics, including multi-step data analytic and statistical methods, software reuse and composition, parallel distributed programming, high-end computing. In addition, students learn about a range of topics in AI, including semantic representations and ontologies, machine learning, natural language processing, and image analysis.

Towards FAIR protocols and workflows: The OpenPREDICT case study Artificial Intelligence

It is essential for the advancement of science that scientists and researchers share, reuse and reproduce workflows and protocols used by others. The FAIR principles are a set of guidelines that aim to maximize the value and usefulness of research data, and emphasize a number of important points regarding the means by which digital objects are found and reused by others. The question of how to apply these principles not just to the static input and output data but also to the dynamic workflows and protocols that consume and produce them is still under debate and poses a number of challenges. In this paper we describe our inclusive and overarching approach to apply the FAIR principles to workflows and protocols and demonstrate its benefits. We apply and evaluate our approach on a case study that consists of making the PREDICT workflow, a highly cited drug repurposing workflow, open and FAIR. This includes FAIRification of the involved datasets, as well as applying semantic technologies to represent and store data about the detailed versions of the general protocol, of the concrete workflow instructions, and of their execution traces. A semantic model was proposed to better address these specific requirements and were evaluated by answering competency questions. This semantic model consists of classes and relations from a number of existing ontologies, including Workflow4ever, PROV, EDAM, and BPMN. This allowed us then to formulate and answer new kinds of competency questions. Our evaluation shows the high degree to which our FAIRified OpenPREDICT workflow now adheres to the FAIR principles and the practicality and usefulness of being able to answer our new competency questions.

Workflow Automation for Cyber Physical System Development Processes Artificial Intelligence

Development of Cyber Physical Systems (CPSs) requires close interaction between developers with expertise in many domains to achieve ever-increasing demands for improved performance, reduced cost, and more system autonomy. Each engineering discipline commonly relies on domain-specific modeling languages, and analysis and execution of these models is often automated with appropriate tooling. However, integration between these heterogeneous models and tools is often lacking, and most of the burden for inter-operation of these tools is placed on system developers. To address this problem, we introduce a workflow modeling language for the automation of complex CPS development processes and implement a platform for execution of these models in the Assurance-based Learning-enabled CPS (ALC) Toolchain. Several illustrative examples are provided which show how these workflow models are able to automate many time-consuming integration tasks previously performed manually by system developers.