Goto

Collaborating Authors

State of AI Report 2019

#artificialintelligence

We believe that AI will be a force multiplier on technological progress in our increasingly digital, data-driven world. This is because everything around us today, ranging from culture to consumer products, is a product of intelligence. In this report, we set out to capture a snapshot of the exponential progress in AI with a focus on developments in the past 12 months. Consider this report as a compilation of the most interesting things we've seen with a goal of triggering an informed conversation about the state of AI and its implication for the future. This edition builds on the inaugural State of AI Report 2018, which can be found here: www.stateof.ai/2018 We consider the following key dimensions in our report: - Research: Technology breakthroughs and their capabilities.


Knowledge Formation and Dialogue Using the KRAKEN Toolset

AAAI Conferences

The KRAKEN toolset is a comprehensive interface for knowledge acquisition that operates in conjunction with the Cyc knowledge base. The KRAKEN system is designed to allow subject-matter experts to make meaningful additions to an existing knowledge base, without the benefit of training in the areas of artificial intelligence, ontology development, or logical representation.


Knowledge Formation and Dialogue Using the KRAKEN Toolset

AAAI Conferences

The KRAKEN toolset is a comprehensive interface for knowledge acquisition that operates in conjunction with the Cyc knowledge base. The KRAKEN system is designed to allow subject-matter experts to make meaningful additions to an existing knowledge base, without the benefit of training in the areas of artificial intelligence, ontology development, or logical representation.


Cyc and the Big C: Reading that Produces and Uses Hypotheses about Complex Molecular Biology Mechanisms

AAAI Conferences

Systems biology, the study of the intricate, ramified, com-plex and interacting mechanisms underlying life, often proves too complex for unaided human understanding, even by groups of people working together. This difficulty is ex-acerbated by the high volume of publications in molecular biology. The Big C (‘C’ for Cyc) is a system designed to (semi-)automatically acquire, integrate, and use complex mechanism models, specifically related to cancer biology, via automated reading and a hyper-detailed refinement pro-cess resting on Cyc’s logical representations and powerful inference mechanisms. We aim to assist cancer research and treatment by achieving elements of biologist-level reason-ing, but with the scale and attention to detail that only com-puter implementations can provide.


Correlations strike back (again): the case of associative memory retrieval

Neural Information Processing Systems

It has long been recognised that statistical dependencies in neuronal activity need to be taken into account when decoding stimuli encoded in a neural population. Less studied, though equally pernicious, is the need to take account of dependencies between synaptic weights when decoding patterns previously encoded in an auto-associative memory. We show that activity-dependent learning generically produces such correlations, and failing to take them into account in the dynamics of memory retrieval leads to catastrophically poor recall. We derive optimal network dynamics for recall in the face of synaptic correlations caused by a range of synaptic plasticity rules. These dynamics involve well-studied circuit motifs, such as forms of feedback inhibition and experimentally observed dendritic nonlinearities. We therefore show how addressing the problem of synaptic correlations leads to a novel functional account of key biophysical features of the neural substrate.