Collaborating Authors

Bayesian Machine Learning in Python: A/B Testing


A/B testing is used everywhere. A/B testing is all about comparing things. If you're a data scientist, and you want to tell the rest of the company, "logo A is better than logo B", well you can't just say that without proving it using numbers and statistics. Traditional A/B testing has been around for a long time, and it's full of approximations and confusing definitions. In this course, while we will do traditional A/B testing in order to appreciate its complexity, what we will eventually get to is the Bayesian machine learning way of doing things. First, we'll see if we can improve on traditional A/B testing with adaptive methods.

Learning Continuous Time Bayesian Networks in Non-stationary Domains

Journal of Artificial Intelligence Research

Non-stationary continuous time Bayesian networks are introduced. They allow the parents set of each node to change over continuous time. Three settings are developed for learning non-stationary continuous time Bayesian networks from data: known transition times, known number of epochs and unknown number of epochs. A score function for each setting is derived and the corresponding learning algorithm is developed. A set of numerical experiments on synthetic data is used to compare the effectiveness of non-stationary continuous time Bayesian networks to that of non-stationary dynamic Bayesian networks. Furthermore, the performance achieved by non-stationary continuous time Bayesian networks is compared to that achieved by state-of-the-art algorithms on four real-world datasets, namely drosophila, saccharomyces cerevisiae, songbird and macroeconomics.

Is The Variational Bayesian Method The Most Difficult Machine Learning Technique?


Data scientist Stefano Cosentino observed in a post that the Bayesian approach leans more towards the distributions associated with each parameter. For instance, he writes that the two parameters depicted below, as shown by the Gaussian curves after a trained Bayesian network has converged. Hence the Bayesian approach, where the parameters are unknown quantities can be considered as random variables. University of Buffalo's paper defines the Bayesian approach to uncertainty, which treats all uncertain quantities as random variables and uses the laws of probability to manipulate those uncertain quantities. Hence, the right Bayesian approach integrates over all uncertain quantities rather than optimise them, states the paper.

Bayesian Basics, Explained


Editor's note: The following is an interview with Columbia University Professor Andrew Gelman conducted by Marketing scientist Kevin Gray, in which Gelman spells out the ABCs of Bayesian statistics. Kevin Gray: Most marketing researchers have heard of Bayesian statistics but know little about it. Can you briefly explain in layperson's terms what it is and how it differs from the'ordinary' statistics most of us learned in college? Andrew Gelman: Bayesian statistics uses the mathematical rules of probability to combines data with "prior information" to give inferences which (if the model being used is correct) are more precise than would be obtained by either source of information alone. Classical statistical methods avoid prior distributions.