Goto

Collaborating Authors

Solving Highly Constrained Search Problems with Quantum Computers

arXiv.org Artificial Intelligence

A previously developed quantum search algorithm for solving 1-SAT problems in a single step is generalized to apply to a range of highly constrained k-SAT problems. We identify a bound on the number of clauses in satisfiability problems for which the generalized algorithm can find a solution in a constant number of steps as the number of variables increases. This performance contrasts with the linear growth in the number of steps required by the best classical algorithms, and the exponential number required by classical and quantum methods that ignore the problem structure. In some cases, the algorithm can also guarantee that insoluble problems in fact have no solutions, unlike previously proposed quantum search algorithms.


Estimating the Density of States of Boolean Satisfiability Problems on Classical and Quantum Computing Platforms

arXiv.org Artificial Intelligence

Given a Boolean formula $\phi(x)$ in conjunctive normal form (CNF), the density of states counts the number of variable assignments that violate exactly $e$ clauses, for all values of $e$. Thus, the density of states is a histogram of the number of unsatisfied clauses over all possible assignments. This computation generalizes both maximum-satisfiability (MAX-SAT) and model counting problems and not only provides insight into the entire solution space, but also yields a measure for the \emph{hardness} of the problem instance. Consequently, in real-world scenarios, this problem is typically infeasible even when using state-of-the-art algorithms. While finding an exact answer to this problem is a computationally intensive task, we propose a novel approach for estimating density of states based on the concentration of measure inequalities. The methodology results in a quadratic unconstrained binary optimization (QUBO), which is particularly amenable to quantum annealing-based solutions. We present the overall approach and compare results from the D-Wave quantum annealer against the best-known classical algorithms such as the Hamze-de Freitas-Selby (HFS) algorithm and satisfiability modulo theory (SMT) solvers.


On Improving Local Search for Unsatisfiability

arXiv.org Artificial Intelligence

Stochastic local search (SLS) has been an active field of research in the last few years, with new techniques and procedures being developed at an astonishing rate. SLS has been traditionally associated with satisfiability solving, that is, finding a solution for a given problem instance, as its intrinsic nature does not address unsatisfiable problems. Unsatisfiable instances were therefore commonly solved using backtrack search solvers. For this reason, in the late 90s Selman, Kautz and McAllester proposed a challenge to use local search instead to prove unsatisfiability. More recently, two SLS solvers - Ranger and Gunsat - have been developed, which are able to prove unsatisfiability albeit being SLS solvers. In this paper, we first compare Ranger with Gunsat and then propose to improve Ranger performance using some of Gunsat's techniques, namely unit propagation look-ahead and extended resolution.


A New Method for Solving Hard Satisfiability Problems

Classics

"We introduce a greedy local search procedure called GSAT for solving propositional satisfiability problems. Our experiments show that this procedure can be used to solve hard, randomly generated problems that are an order of magnitude larger than those that can be handled by more traditional approaches such as the Davis-Putnam procedure or resolution. We also show that GSAT can solve structured satisfiability problems quickly. In particular, we solve encodings of graph coloring problems, N-queens, and Boolean induction. General application strategies and limitations of the approach are also discussed. GSAT is best viewed as a model-finding procedure. Its good performance suggests that it may be advantageous to reformulate reasoning tasks that have traditionally been viewed as theorem-proving problems as model-finding tasks." Proc. AAAI-92.


Streamlining Variational Inference for Constraint Satisfaction Problems

arXiv.org Artificial Intelligence

Several algorithms for solving constraint satisfaction problems are based on survey propagation, a variational inference scheme used to obtain approximate marginal probability estimates for variable assignments. These marginals correspond to how frequently each variable is set to true among satisfying assignments, and are used to inform branching decisions during search; however, marginal estimates obtained via survey propagation are approximate and can be self-contradictory. We introduce a more general branching strategy based on streamlining constraints, which sidestep hard assignments to variables. We show that streamlined solvers consistently outperform decimation-based solvers on random k-SAT instances for several problem sizes, shrinking the gap between empirical performance and theoretical limits of satisfiability by 16.3% on average for k 3, 4, 5, 6.