Collaborating Authors

Learning to Order Things Artificial Intelligence

There are many applications in which it is desirable to order rather than classify instances. Here we consider the problem of learning how to order instances given feedback in the form of preference judgments, i.e., statements to the effect that one instance should be ranked ahead of another. We outline a two-stage approach in which one first learns by conventional means a binary preference function indicating whether it is advisable to rank one instance before another. Here we consider an on-line algorithm for learning preference functions that is based on Freund and Schapire's 'Hedge' algorithm. In the second stage, new instances are ordered so as to maximize agreement with the learned preference function. We show that the problem of finding the ordering that agrees best with a learned preference function is NP-complete. Nevertheless, we describe simple greedy algorithms that are guaranteed to find a good approximation. Finally, we show how metasearch can be formulated as an ordering problem, and present experimental results on learning a combination of 'search experts', each of which is a domain-specific query expansion strategy for a web search engine.

Efficient Heuristic Hypothesis Ranking

Journal of Artificial Intelligence Research

This paper considers the problem of learning the ranking of a set of stochastic alternatives based upon incomplete information (i.e., a limited number of samples). We describe a system that, at each decision cycle, outputs either a complete ordering on the hypotheses or decides to gather additional information (i.e., observations) at some cost. The ranking problem is a generalization of the previously studied hypothesis selection problem - in selection, an algorithm must select the single best hypothesis, while in ranking, an algorithm must order all the hypotheses. The central problem we address is achieving the desired ranking quality while minimizing the cost of acquiring additional samples. We describe two algorithms for hypothesis ranking and their application for the probably approximately correct (PAC) and expected loss (EL) learning criteria. Empirical results are provided to demonstrate the effectiveness of these ranking procedures on both synthetic and real-world datasets.

Ordered Landmarks in Planning

Journal of Artificial Intelligence Research

Many known planning tasks have inherent constraints concerning the best order in which to achieve the goals. A number of research efforts have been made to detect such constraints and to use them for guiding search, in the hope of speeding up the planning process. We go beyond the previous approaches by considering ordering constraints not only over the (top-level) goals, but also over the sub-goals that will necessarily arise during planning. Landmarks are facts that must be true at some point in every valid solution plan. We extend Koehler and Hoffmann's definition of reasonable orders between top level goals to the more general case of landmarks. We show how landmarks can be found, how their reasonable orders can be approximated, and how this information can be used to decompose a given planning task into several smaller sub-tasks. Our methodology is completely domain- and planner-independent. The implementation demonstrates that the approach can yield significant runtime performance improvements when used as a control loop around state-of-the-art sub-optimal planning systems, as exemplified by FF and LPG.

Evolutionary Algorithms for Reinforcement Learning

Journal of Artificial Intelligence Research

There are two distinct approaches to solving reinforcement learning problems, namely, searching in value function space and searching in policy space. Temporal difference methods and evolutionary algorithms are well-known examples of these approaches. Kaelbling, Littman and Moore recently provided an informative survey of temporal difference methods. This article focuses on the application of evolutionary algorithms to the reinforcement learning problem, emphasizing alternative policy representations, credit assignment methods, and problem-specific genetic operators. Strengths and weaknesses of the evolutionary approach to reinforcement learning are presented, along with a survey of representative applications.

Substructure Discovery Using Minimum Description Length and Background Knowledge

Journal of Artificial Intelligence Research

The ability to identify interesting and repetitive substructures is an essential component to discovering knowledge in structural data. We describe a new version of our SUBDUE substructure discovery system based on the minimum description length principle. The SUBDUE system discovers substructures that compress the original data and represent structural concepts in the data. By replacing previously-discovered substructures in the data, multiple passes of SUBDUE produce a hierarchical description of the structural regularities in the data. SUBDUE uses a computationally-bounded inexact graph match that identifies similar, but not identical, instances of a substructure and finds an approximate measure of closeness of two substructures when under computational constraints. In addition to the minimum description length principle, other background knowledge can be used by SUBDUE to guide the search towards more appropriate substructures. Experiments in a variety of domains demonstrate SUBDUE's ability to find substructures capable of compressing the original data and to discover structural concepts important to the domain. Description of Online Appendix: This is a compressed tar file containing the SUBDUE discovery system, written in C. The program accepts as input databases represented in graph form, and will output discovered substructures with their corresponding value.