Latent Tree Analysis

AAAI Conferences

Latent tree analysis seeks to model the correlations amonga set of random variables using a tree of latent variables. It was proposed as an improvement to latent class analysis—a method widely used in social sciences and medicine to identify homogeneous subgroups in a population. It provides new and fruitful perspectives on a number of machine learningareas, including cluster analysis, topic detection, and deep probabilistic modeling. This paper gives an overview of the research on latent tree analysis and various ways it is used inpractice.

Hierarchical Latent Class Models for Cluster Analysis

AAAI Conferences

Latent class models are used for cluster analysis of categorical data. Underlying such a model is the assumption that the observed variables are mutually independent given the class variable. A serious problem with the use of latent class models, known as local dependence, is that this assumption is often untrue. In this paper we propose hierarchical latent class models as a framework where the local dependence problem can be addressed in a principled manner. We develop a search-based algorithm for learning hierarchical latent class models from data. The algorithm is evaluated using both synthetic and real-world data.

Learning Latent Tree Graphical Models Machine Learning

We study the problem of learning a latent tree graphical model where samples are available only from a subset of variables. We propose two consistent and computationally efficient algorithms for learning minimal latent trees, that is, trees without any redundant hidden nodes. Unlike many existing methods, the observed nodes (or variables) are not constrained to be leaf nodes. Our first algorithm, recursive grouping, builds the latent tree recursively by identifying sibling groups using so-called information distances. One of the main contributions of this work is our second algorithm, which we refer to as CLGrouping. CLGrouping starts with a pre-processing procedure in which a tree over the observed variables is constructed. This global step groups the observed nodes that are likely to be close to each other in the true latent tree, thereby guiding subsequent recursive grouping (or equivalent procedures) on much smaller subsets of variables. This results in more accurate and efficient learning of latent trees. We also present regularized versions of our algorithms that learn latent tree approximations of arbitrary distributions. We compare the proposed algorithms to other methods by performing extensive numerical experiments on various latent tree graphical models such as hidden Markov models and star graphs. In addition, we demonstrate the applicability of our methods on real-world datasets by modeling the dependency structure of monthly stock returns in the S&P index and of the words in the 20 newsgroups dataset.

Latent tree models Machine Learning

Latent tree models are graphical models defined on trees, in which only a subset of variables is observed. They were first discussed by Judea Pearl as tree-decomposable distributions to generalise star-decomposable distributions such as the latent class model. Latent tree models, or their submodels, are widely used in: phylogenetic analysis, network tomography, computer vision, causal modeling, and data clustering. They also contain other well-known classes of models like hidden Markov models, Brownian motion tree model, the Ising model on a tree, and many popular models used in phylogenetics. This article offers a concise introduction to the theory of latent tree models. We emphasise the role of tree metrics in the structural description of this model class, in designing learning algorithms, and in understanding fundamental limits of what and when can be learned.

Kernel Embeddings of Latent Tree Graphical Models

Neural Information Processing Systems

Latent tree graphical models are natural tools for expressing long range and hierarchical dependencies among many variables which are common in computer vision, bioinformatics and natural language processing problems. However, existing models are largely restricted to discrete and Gaussian variables due to computational constraints; furthermore, algorithms for estimating the latent tree structure and learning the model parameters are largely restricted to heuristic local search. We present a method based on kernel embeddings of distributions for latent tree graphical models with continuous and non-Gaussian variables. Our method can recover the latent tree structures with provable guarantees and perform local-minimum free parameter learning and efficient inference. Experiments on simulated and real data show the advantage of our proposed approach.