Goto

Collaborating Authors

Neural Machine Translation with Monolingual Translation Memory

arXiv.org Artificial Intelligence

Prior work has proved that Translation memory (TM) can boost the performance of Neural Machine Translation (NMT). In contrast to existing work that uses bilingual corpus as TM and employs source-side similarity search for memory retrieval, we propose a new framework that uses monolingual memory and performs learnable memory retrieval in a cross-lingual manner. Our framework has unique advantages. First, the cross-lingual memory retriever allows abundant monolingual data to be TM. Second, the memory retriever and NMT model can be jointly optimized for the ultimate translation goal. Experiments show that the proposed method obtains substantial improvements. Remarkably, it even outperforms strong TM-augmented NMT baselines using bilingual TM. Owning to the ability to leverage monolingual data, our model also demonstrates effectiveness in low-resource and domain adaptation scenarios.


Reciprocal Supervised Learning Improves Neural Machine Translation

arXiv.org Artificial Intelligence

Despite the recent success on image classification, self-training has only achieved limited gains on structured prediction tasks such as neural machine translation (NMT). This is mainly due to the compositionality of the target space, where the far-away prediction hypotheses lead to the notorious reinforced mistake problem. In this paper, we revisit the utilization of multiple diverse models and present a simple yet effective approach named Reciprocal-Supervised Learning (RSL). RSL first exploits individual models to generate pseudo parallel data, and then cooperatively trains each model on the combined synthetic corpus. RSL leverages the fact that different parameterized models have different inductive biases, and better predictions can be made by jointly exploiting the agreement among each other. Unlike the previous knowledge distillation methods built upon a much stronger teacher, RSL is capable of boosting the accuracy of one model by introducing other comparable or even weaker models. RSL can also be viewed as a more efficient alternative to ensemble. Extensive experiments demonstrate the superior performance of RSL on several benchmarks with significant margins.


Microsoft Research Asia's Systems for WMT19

arXiv.org Machine Learning

Yingce Xia, Xu T an, Fei Tian, Fei Gao, Weicong Chen, Y ang Fan, Linyuan Gong, Yichong Leng, Renqian Luo, Yiren Wang, Lijun Wu, Jinhua Zhu, T ao Qin, Tie-Y an Liu Microsoft Research Asia Abstract We Microsoft Research Asia made submissions to 11 language directions in the WMT19 news translation tasks. We won the first place for 8 of the 11 directions and the second place for the other three. Our basic systems are built on Transformer, back translation and knowledge distillation. We integrate several of our rececent techniques to enhance the baseline systems: multi-agent dual learning (MADL), masked sequence-to-sequence pre-training (MASS), neural architecture optimization (NAO), and soft contextual data augmentation (SCA). 1 Introduction We participated in the WMT19 shared news translation task in 11 translation directions. We achieved first place for 8 directions: German English, German French, Chinese English, English Lithuanian, English Finnish, and Russian English, and three other directions were placed second (ranked by teams), which included Lithuanian English, Finnish English, and English Kazakh. Our basic systems are based on Transformer, back translation and knowledge distillation. We experimented with several techniques we proposed recently. In brief, the innovations we introduced are: Multi-agent dual learning (MADL) The core idea of dual learning is to leverage the duality between the primal task (mapping from domain X to domain Y) and dual task (mapping from domain Y to X) to boost the performances of both tasks. MADL (Wang et al., 2019) extends the dual learning (He et al., 2016; Xia et al., 2017a) framework by introducing multiple primal and dual models. It was integrated into our submitted systems for*Corresponding author.


A Study of Reinforcement Learning for Neural Machine Translation

arXiv.org Artificial Intelligence

Recent studies have shown that reinforcement learning (RL) is an effective approach for improving the performance of neural machine translation (NMT) system. However, due to its instability, successfully RL training is challenging, especially in real-world systems where deep models and large datasets are leveraged. In this paper, taking several large-scale translation tasks as testbeds, we conduct a systematic study on how to train better NMT models using reinforcement learning. We provide a comprehensive comparison of several important factors (e.g., baseline reward, reward shaping) in RL training. Furthermore, to fill in the gap that it remains unclear whether RL is still beneficial when monolingual data is used, we propose a new method to leverage RL to further boost the performance of NMT systems trained with source/target monolingual data. By integrating all our findings, we obtain competitive results on WMT14 English- German, WMT17 English-Chinese, and WMT17 Chinese-English translation tasks, especially setting a state-of-the-art performance on WMT17 Chinese-English translation task.


Unsupervised Statistical Machine Translation

arXiv.org Artificial Intelligence

While modern machine translation has relied on large parallel corpora, a recent line of work has managed to train Neural Machine Translation (NMT) systems from monolingual corpora only (Artetxe et al., 2018c; Lample et al., 2018). Despite the potential of this approach for low-resource settings, existing systems are far behind their supervised counterparts, limiting their practical interest. In this paper, we propose an alternative approach based on phrase-based Statistical Machine Translation (SMT) that significantly closes the gap with supervised systems. Our method profits from the modular architecture of SMT: we first induce a phrase table from monolingual corpora through cross-lingual embedding mappings, combine it with an n-gram language model, and fine-tune hyperparameters through an unsupervised MERT variant. In addition, iterative backtranslation improves results further, yielding, for instance, 14.08 and 26.22 BLEU points in WMT 2014 English-German and English-French, respectively, an improvement of more than 7-10 BLEU points over previous unsupervised systems, and closing the gap with supervised SMT (Moses trained on Europarl) down to 2-5 BLEU points. Our implementation is available at https://github.com/artetxem/monoses