Collaborating Authors

State of AI Report 2019


We believe that AI will be a force multiplier on technological progress in our increasingly digital, data-driven world. This is because everything around us today, ranging from culture to consumer products, is a product of intelligence. In this report, we set out to capture a snapshot of the exponential progress in AI with a focus on developments in the past 12 months. Consider this report as a compilation of the most interesting things we've seen with a goal of triggering an informed conversation about the state of AI and its implication for the future. This edition builds on the inaugural State of AI Report 2018, which can be found here: We consider the following key dimensions in our report: - Research: Technology breakthroughs and their capabilities.

Efficient Neural Architecture Transformation Search in Channel-Level for Object Detection

Neural Information Processing Systems

Recently, Neural Architecture Search has achieved great success in large-scale image classification. In contrast, there have been limited works focusing on architecture search for object detection, mainly because the costly ImageNet pretraining is always required for detectors. Training from scratch, as a substitute, demands more epochs to converge and brings no computation saving. To overcome this obstacle, we introduce a practical neural architecture transformation search(NATS) algorithm for object detection in this paper. Instead of searching and constructing an entire network, NATS explores the architecture space on the base of existing network and reusing its weights.

r/MachineLearning - [R] Neuroevolution of Self-Interpretable Agents


Inattentional blindness is the psychological phenomenon that causes one to miss things in plain sight. It is a consequence of the selective attention in perception that lets us remain focused on important parts of our world without distraction from irrelevant details. Motivated by selective attention, we study the properties of artificial agents that perceive the world through the lens of a self-attention bottleneck. By constraining access to only a small fraction of the visual input, we show that their policies are directly interpretable in pixel space. We find neuroevolution ideal for training self-attention architectures for vision-based reinforcement learning (RL) tasks, allowing us to incorporate modules that can include discrete, non-differentiable operations which are useful for our agent.

Articulated Pose Estimation by a Graphical Model with Image Dependent Pairwise Relations

Neural Information Processing Systems

We present a method for estimating articulated human pose from a single static image based on a graphical model with novel pairwise relations that make adaptive use of local image measurements. More precisely, we specify a graphical model for human pose which exploits the fact the local image measurements can be used both to detect parts (or joints) and also to predict the spatial relationships between them (Image Dependent Pairwise Relations). These spatial relationships are represented by a mixture model. We use Deep Convolutional Neural Networks (DCNNs) to learn conditional probabilities for the presence of parts and their spatial relationships within image patches. Hence our model combines the representational flexibility of graphical models with the efficiency and statistical power of DCNNs.