On the Difficulty of Achieving Equilibrium in Interactive POMDPs

AAAI Conferences

We analyze the asymptotic behavior of agents engaged in an infinite horizon partially observable stochastic game as formalized by the interactive POMDP framework. We show that when agents' initial beliefs satisfy a truth compatibility condition, their behavior converges to a subjective ɛ-equilibrium in a finite time, and subjective equilibrium in the limit. This result is a generalization of a similar result in repeated games, to partially observable stochastic games. However, it turns out that the equilibrating process is difficult to demonstrate computationally because of the difficulty in coming up with initial beliefs that are both natural and satisfy the truth compatibility condition. Our results, therefore, shed some negative light on using equilibria as a solution concept for decision making in partially observable stochastic games.


Neural Networks for Determining Protein Specificity and Multiple Alignment of Binding Sites

AAAI Conferences

Regulation of gene expression often involves proteins that bind to particular regions of DNA. Determining the binding sites for a protein and its specificity usually requires extensive biochemical and/or genetic experimentation. In this paper we illustrate the use of a neural network to obtain the desired information with much less experimental effort. It is often fairly easy to obtain a set of moderate length sequences, perhaps one or two hundred base-pairs, that each contain binding sites for the protein being studied. For example, the upstream regions of a set of genes that are all regulated by the same protein should each contain binding sites for that protein.


Sharing Clusters among Related Groups: Hierarchical Dirichlet Processes

Neural Information Processing Systems

We propose the hierarchical Dirichlet process (HDP), a nonparametric Bayesian model for clustering problems involving multiple groups of data. Each group of data is modeled with a mixture, with the number of components being open-ended and inferred automatically by the model. Further, components can be shared across groups, allowing dependencies across groups to be modeled effectively as well as conferring generalization tonew groups. Such grouped clustering problems occur often in practice, e.g. in the problem of topic discovery in document corpora. We report experimental results on three text corpora showing the effective and superior performance of the HDP over previous models.


Differentially Private Markov Chain Monte Carlo

arXiv.org Machine Learning

Recent developments in differentially private (DP) machine learning and DP Bayesian learning have enabled learning under strong privacy guarantees for the training data subjects. In this paper, we further extend the applicability of DP Bayesian learning by presenting the first general DP Markov chain Monte Carlo (MCMC) algorithm whose privacy-guarantees are not subject to unrealistic assumptions on Markov chain convergence and that is applicable to posterior inference in arbitrary models. Our algorithm is based on a decomposition of the Barker acceptance test that allows evaluating the R\'enyi DP privacy cost of the accept-reject choice. We further show how to improve the DP guarantee through data subsampling and approximate acceptance tests.


Bayesian Non-Homogeneous Markov Models via Polya-Gamma Data Augmentation with Applications to Rainfall Modeling

arXiv.org Machine Learning

Discrete-time hidden Markov models are a broadly useful class of latent-variable models with applications in areas such as speech recognition, bioinformatics, and climate data analysis. It is common in practice to introduce temporal non-homogeneity into such models by making the transition probabilities dependent on time-varying exogenous input variables via a multinomial logistic parametrization. We extend such models to introduce additional non-homogeneity into the emission distribution using a generalized linear model (GLM), with data augmentation for sampling-based inference. However, the presence of the logistic function in the state transition model significantly complicates parameter inference for the overall model, particularly in a Bayesian context. To address this we extend the recently-proposed Polya-Gamma data augmentation approach to handle non-homogeneous hidden Markov models (NHMMs), allowing the development of an efficient Markov chain Monte Carlo (MCMC) sampling scheme. We apply our model and inference scheme to 30 years of daily rainfall in India, leading to a number of insights into rainfall-related phenomena in the region. Our proposed approach allows for fully Bayesian analysis of relatively complex NHMMs on a scale that was not possible with previous methods. Software implementing the methods described in the paper is available via the R package NHMM.