Differential Bayesian Neural Nets

arXiv.org Machine Learning

Neural Ordinary Differential Equations (N-ODEs) are a powerful building block for learning systems, which extend residual networks to a continuous-time dynamical system. We propose a Bayesian version of N-ODEs that enables well-calibrated quantification of prediction uncertainty, while maintaining the expressive power of their deterministic counterpart. We assign Bayesian Neural Nets (BNNs) to both the drift and the diffusion terms of a Stochastic Differential Equation (SDE) that models the flow of the activation map in time. We infer the posterior on the BNN weights using a straightforward adaptation of Stochastic Gradient Langevin Dynamics (SGLD). We illustrate significantly improved stability on two synthetic time series prediction tasks and report better model fit on UCI regression benchmarks with our method when compared to its non-Bayesian counterpart.

On the Convergence of Stochastic Variational Inference in Bayesian Networks

arXiv.org Machine Learning

We highlight a pitfall when applying stochastic variational inference to general Bayesian networks. For global random variables approximated by an exponential family distribution, natural gradient steps, commonly starting from a unit length step size, are averaged to convergence. This useful insight into the scaling of initial step sizes is lost when the approximation factorizes across a general Bayesian network, and care must be taken to ensure practical convergence. We experimentally investigate how much of the baby (well-scaled steps) is thrown out with the bath water (exact gradients).

Stochastic Expectation Propagation

Neural Information Processing Systems

Expectation propagation (EP) is a deterministic approximation algorithm that is often used to perform approximate Bayesian parameter learning. EP approximates the full intractable posterior distribution through a set of local-approximations that are iteratively refined for each datapoint. EP can offer analytic and computational advantages over other approximations, such as Variational Inference (VI), and is the method of choice for a number of models. The local nature of EP appears to make it an ideal candidate for performing Bayesian learning on large models in large-scale datasets settings. However, EP has a crucial limitation in this context: the number approximating factors needs to increase with the number of data-points, N, which often entails a prohibitively large memory overhead.