We discuss the representation of knowledge and of belief from the viewpoint of decision theory. While the Bayesian approach enjoys general-purpose applicability and axiomatic foundations, it suffers from several drawbacks. In particular, it does not model the belief formation process, and does not relate beliefs to evidence. We survey alternative approaches, and focus on formal model of casebased prediction and case-based decisions. A formal model of belief and knowledge representation needs to address several questions. The most basic ones are: (i) how do we represent knowledge?

We propose an abductive diagnosis theory that integrates probabilistic, causal and taxonomic knowledge. Probabilistic knowledge allows us to select the most likely explanation; causal knowledge allows us to make reasonable independence assumptions; taxonomic knowledge allows causation to be modeled at different levels of detail, and allows observations be described in different levels of precision. Unlike most other approaches where a causal explanation is a hypothesis that one or more causative events occurred, we define an explanation of a set of observations to be an occurrence of a chain of causation events. These causation events constitute a scenario where all the observations are true. We show that the probabilities of the scenarios can be computed from the conditional probabilities of the causation events. Abductive reasoning is inherently complex even if only modest expressive power is allowed. However, our abduction algorithm is exponential only in the number of observations to be explained, and is polynomial in the size of the knowledge base. This contrasts with many other abduction procedures that are exponential in the size of the knowledge base.

Many real-world problems, including inference in Bayes Nets, can be reduced to #SAT, the problem of counting the number of models of a propositional theory. This has motivated the need for efficient #SAT solvers. Currently, such solvers utilize a modified version of DPLL that employs decomposition and caching, techniques that significantly increase the time it takes to process each node in the search space. In addition, the search space is significantly larger than when solving SAT since we must continue searching even after the first solution has been found. It has previously been demonstrated that the size of a DPLL search tree can be significantly reduced by doing more reasoning at each node. However, for SAT the reductions gained are often not worth the extra time required. In this paper we verify the hypothesis that for #SAT this balance changes. In particular, we show that additional reasoning can reduce the size of a #SAT solver's search space, that this reduction cannot always be achieved by the already utilized technique of clause learning, and that this additional reasoning can be cost effective.

Dechter, Rina, Mateescu, Robert

The paper introduces mixed networks, a new framework for expressing and reasoning with probabilistic and deterministic information. The framework combines belief networks with constraint networks, defining the semantics and graphical representation. We also introduce the AND/OR search space for graphical models, and develop a new linear space search algorithm. This provides the basis for understanding the benefits of processing the constraint information separately, resulting in the pruning of the search space. When the constraint part is tractable or has a small number of solutions, using the mixed representation can be exponentially more effective than using pure belief networks which odel constraints as conditional probability tables.

While they are very useful to diagnose typical cases, it is difficult for them to diagnose complicated cases. Therefore various approaches, such as deeper knowledge representation, case-based reasoning, are proposed in order to overcome this problem. However, they axe not sufficient to solve this problem completely. One reason that they are not so sutticient is that they are lacking one important track of diagnosis that medical experts do when they meet complicated cases. In this paper, we introduce combination of reasoning, planning and learning methods in order to solve this difficulty.