Collaborating Authors

Implicit Coordination in Crowded Multi-Agent Navigation

AAAI Conferences

In crowded multi-agent navigation environments, the motion of the agents is significantly constrained by the motion of the nearby agents. This makes planning paths very difficult and leads to inefficient global motion. To address this problem, we propose a new distributed approach to coordinate the motions of agents in crowded environments. With our approach, agents take into account the velocities and goals of their neighbors and optimize their motion accordingly and in real-time. We experimentally validate our coordination approach in a variety of scenarios and show that its performance scales to scenarios with hundreds of agents.

LAC-Nav: Collision-Free Mutiagent Navigation Based on The Local Action Cells Artificial Intelligence

November 13, 2019 Abstract Collision avoidance is one of the most primary problems in the decentralized multiagent navigation: while the agents are moving towards their own targets, attentions should be paid to avoid the collisions with the others. In this paper, we introduced the concept of the local action cell, which provides for each agent a set of velocities that are safe to perform. Consequently, as long as the local action cells are updated on time and each agent selects its motion within the corresponding cell, there should be no collision caused. Furthermore, we coupled the local action cell with an adaptive learning framework, in which the performance of selected motions are evaluated and used as the references for making decisions in the following updates. The efficiency of the proposed approaches were demonstrated through the experiments for three commonly considered scenarios, where the comparisons have been made with several well studied strategies. 1 Introduction Collision-free navigation is a fundamental and important problem in the design of the multiagent systems, which are widely applied in the fields such as robots control and traffic engineering.

Optimized Directed Roadmap Graph for Multi-Agent Path Finding Using Stochastic Gradient Descent Artificial Intelligence

We present a novel approach called Optimized Directed Roadmap Graph (ODRM). It is a method to build a directed roadmap graph that allows for collision avoidance in multi-robot navigation. This is a highly relevant problem, for example for industrial autonomous guided vehicles. The core idea of ODRM is, that a directed roadmap can encode inherent properties of the environment which are useful when agents have to avoid each other in that same environment. Like Probabilistic Roadmaps (PRMs), ODRM's first step is generating samples from C-space. In a second step, ODRM optimizes vertex positions and edge directions by Stochastic Gradient Descent (SGD). This leads to emergent properties like edges parallel to walls and patterns similar to two-lane streets or roundabouts. Agents can then navigate on this graph by searching their path independently and solving occurring agent-agent collisions at run-time. Using the graphs generated by ODRM compared to a non-optimized graph significantly fewer agent-agent collisions happen. We evaluate our roadmap with both, centralized and decentralized planners. Our experiments show that with ODRM even a simple centralized planner can solve problems with high numbers of agents that other multi-agent planners can not solve. Additionally, we use simulated robots with decentralized planners and online collision avoidance to show how agents are a lot faster on our roadmap than on standard grid maps.

Deep-Learned Collision Avoidance Policy for Distributed Multi-Agent Navigation Artificial Intelligence

High-speed, low-latency obstacle avoidance that is insensitive to sensor noise is essential for enabling multiple decentralized robots to function reliably in cluttered and dynamic environments. While other distributed multi-agent collision avoidance systems exist, these systems require online geometric optimization where tedious parameter tuning and perfect sensing are necessary. We present a novel end-to-end framework to generate reactive collision avoidance policy for efficient distributed multi-agent navigation. Our method formulates an agent's navigation strategy as a deep neural network mapping from the observed noisy sensor measurements to the agent's steering commands in terms of movement velocity. We train the network on a large number of frames of collision avoidance data collected by repeatedly running a multi-agent simulator with different parameter settings. We validate the learned deep neural network policy in a set of simulated and real scenarios with noisy measurements and demonstrate that our method is able to generate a robust navigation strategy that is insensitive to imperfect sensing and works reliably in all situations. We also show that our method can be well generalized to scenarios that do not appear in our training data, including scenes with static obstacles and agents with different sizes. Videos are available at

DeepMNavigate: Deep Reinforced Multi-Robot Navigation Unifying Local & Global Collision Avoidance Artificial Intelligence

We present a novel algorithm (DeepMNavigate) for global multi-agent navigation in dense scenarios using deep reinforcement learning. Our approach uses local and global information for each robot based on motion information maps. We use a three-layer CNN that uses these maps as input and generate a suitable action to drive each robot to its goal position. Our approach is general, learns an optimal policy using a multi-scenario, multi-state training algorithm, and can directly handle raw sensor measurements for local observations. We demonstrate the performance on complex, dense benchmarks with narrow passages on environments with tens of agents. We highlight the algorithm's benefits over prior learning methods and geometric decentralized algorithms in complex scenarios.