Goto

Collaborating Authors

The Human Kernel

arXiv.org Machine Learning

Bayesian nonparametric models, such as Gaussian processes, provide a compelling framework for automatic statistical modelling: these models have a high degree of flexibility, and automatically calibrated complexity. However, automating human expertise remains elusive; for example, Gaussian processes with standard kernels struggle on function extrapolation problems that are trivial for human learners. In this paper, we create function extrapolation problems and acquire human responses, and then design a kernel learning framework to reverse engineer the inductive biases of human learners across a set of behavioral experiments. We use the learned kernels to gain psychological insights and to extrapolate in human-like ways that go beyond traditional stationary and polynomial kernels. Finally, we investigate Occam's razor in human and Gaussian process based function learning.


The Human Kernel

Neural Information Processing Systems

Bayesian nonparametric models, such as Gaussian processes, provide a compelling framework for automatic statistical modelling: these models have a high degree of flexibility, and automatically calibrated complexity. However, automating human expertise remains elusive; for example, Gaussian processes with standard kernels struggle on function extrapolation problems that are trivial for human learners. In this paper, we create function extrapolation problems and acquire human responses, and then design a kernel learning framework to reverse engineer the inductive biases of human learners across a set of behavioral experiments. We use the learned kernels to gain psychological insights and to extrapolate in human-like ways that go beyond traditional stationary and polynomial kernels. Finally, we investigate Occam's razor in human and Gaussian process based function learning.


Modeling human function learning with Gaussian processes

Neural Information Processing Systems

Accounts of how people learn functional relationships between continuous variables have tended to focus on two possibilities: that people are estimating explicit functions, or that they are simply performing associative learning supported by similarity. We provide a rational analysis of function learning, drawing on work on regression in machine learning and statistics. Using the equivalence of Bayesian linear regression and Gaussian processes, we show that learning explicit rules and using similarity can be seen as two views of one solution to this problem. We use this insight to define a Gaussian process model of human function learning that combines the strengths of both approaches.


GPatt: Fast Multidimensional Pattern Extrapolation with Gaussian Processes

arXiv.org Machine Learning

Gaussian processes are typically used for smoothing and interpolation on small datasets. We introduce a new Bayesian nonparametric framework -- GPatt -- enabling automatic pattern extrapolation with Gaussian processes on large multidimensional datasets. GPatt unifies and extends highly expressive kernels and fast exact inference techniques. Without human intervention -- no hand crafting of kernel features, and no sophisticated initialisation procedures -- we show that GPatt can solve large scale pattern extrapolation, inpainting, and kernel discovery problems, including a problem with 383400 training points. We find that GPatt significantly outperforms popular alternative scalable Gaussian process methods in speed and accuracy. Moreover, we discover profound differences between each of these methods, suggesting expressive kernels, nonparametric representations, and exact inference are useful for modelling large scale multidimensional patterns.


Gaussian Process Kernels for Pattern Discovery and Extrapolation

arXiv.org Artificial Intelligence

Gaussian processes are rich distributions over functions, which provide a Bayesian nonparametric approach to smoothing and interpolation. We introduce simple closed form kernels that can be used with Gaussian processes to discover patterns and enable extrapolation. These kernels are derived by modelling a spectral density -- the Fourier transform of a kernel -- with a Gaussian mixture. The proposed kernels support a broad class of stationary covariances, but Gaussian process inference remains simple and analytic. We demonstrate the proposed kernels by discovering patterns and performing long range extrapolation on synthetic examples, as well as atmospheric CO2 trends and airline passenger data. We also show that we can reconstruct standard covariances within our framework.