Collaborating Authors

Deconvolution-Based Global Decoding for Neural Machine Translation Artificial Intelligence

A great proportion of sequence-to-sequence (Seq2Seq) models for Neural Machine Translation (NMT) adopt Recurrent Neural Network (RNN) to generate translation word by word following a sequential order. As the studies of linguistics have proved that language is not linear word sequence but sequence of complex structure, translation at each step should be conditioned on the whole target-side context. To tackle the problem, we propose a new NMT model that decodes the sequence with the guidance of its structural prediction of the context of the target sequence. Our model generates translation based on the structural prediction of the target-side context so that the translation can be freed from the bind of sequential order. Experimental results demonstrate that our model is more competitive compared with the state-of-the-art methods, and the analysis reflects that our model is also robust to translating sentences of different lengths and it also reduces repetition with the instruction from the target-side context for decoding.

Joint Training for Neural Machine Translation Models with Monolingual Data

AAAI Conferences

Monolingual data have been demonstrated to be helpful in improving translation quality of both statistical machine translation (SMT) systems and neural machine translation (NMT) systems, especially in resource-poor or domain adaptation tasks where parallel data are not rich enough. In this paper, we propose a novel approach to better leveraging monolingual data for neural machine translation by jointly learning source-to-target and target-to-source NMT models for a language pair with a joint EM optimization method. The training process starts with two initial NMT models pre-trained on parallel data for each direction, and these two models are iteratively updated by incrementally decreasing translation losses on training data.In each iteration step, both NMT models are first used to translate monolingual data from one language to the other, forming pseudo-training data of the other NMT model. Then two new NMT models are learnt from parallel data together with the pseudo training data. Both NMT models are expected to be improved and better pseudo-training data can be generated in next step. Experiment results on Chinese-English and English-German translation tasks show that our approach can simultaneously improve translation quality of source-to-target and target-to-source models, significantly outperforming strong baseline systems which are enhanced with monolingual data for model training including back-translation.

Synchronous Bidirectional Neural Machine Translation Artificial Intelligence

Existing approaches to neural machine translation (NMT) generate the target language sequence token by token from left to right. However, this kind of unidirectional decoding framework cannot make full use of the target-side future contexts which can be produced in a right-to-left decoding direction, and thus suffers from the issue of unbalanced outputs. In this paper, we introduce a synchronous bidirectional neural machine translation (SB-NMT) that predicts its outputs using left-to-right and right-to-left decoding simultaneously and interactively, in order to leverage both of the history and future information at the same time. Specifically, we first propose a new algorithm that enables synchronous bidirectional decoding in a single model. Then, we present an interactive decoding model in which left-to-right (right-to-left) generation does not only depend on its previously generated outputs, but also relies on future contexts predicted by right-to-left (left-to-right) decoding. We extensively evaluate the proposed SB-NMT model on large-scale NIST Chinese-English, WMT14 English-German, and WMT18 Russian-English translation tasks. Experimental results demonstrate that our model achieves significant improvements over the strong Transformer model by 3.92, 1.49 and 1.04 BLEU points respectively, and obtains the state-of-the-art performance on Chinese-English and English-German translation tasks.

Learning to Refine Source Representations for Neural Machine Translation Artificial Intelligence

Neural machine translation (NMT) models generally adopt an encoder-decoder architecture for modeling the entire translation process. The encoder summarizes the representation of input sentence from scratch, which is potentially a problem if the sentence is ambiguous. When translating a text, humans often create an initial understanding of the source sentence and then incrementally refine it along the translation on the target side. Starting from this intuition, we propose a novel encoder-refiner-decoder framework, which dynamically refines the source representations based on the generated target-side information at each decoding step. Since the refining operations are time-consuming, we propose a strategy, leveraging the power of reinforcement learning models, to decide when to refine at specific decoding steps. Experimental results on both Chinese-English and English-German translation tasks show that the proposed approach significantly and consistently improves translation performance over the standard encoder-decoder framework. Furthermore, when refining strategy is applied, results still show reasonable improvement over the baseline without much decrease in decoding speed.

Sequence Generation: From Both Sides to the Middle Artificial Intelligence

The encoder-decoder framework has achieved promising process for many sequence generation tasks, such as neural machine translation and text summarization. Such a framework usually generates a sequence token by token from left to right, hence (1) this autoregressive decoding procedure is time-consuming when the output sentence becomes longer, and (2) it lacks the guidance of future context which is crucial to avoid under translation. To alleviate these issues, we propose a synchronous bidirectional sequence generation (SBSG) model which predicts its outputs from both sides to the middle simultaneously. In the SBSG model, we enable the left-to-right (L2R) and right-to-left (R2L) generation to help and interact with each other by leveraging interactive bidirectional attention network. Experiments on neural machine translation (En-De, Ch-En, and En-Ro) and text summarization tasks show that the proposed model significantly speeds up decoding while improving the generation quality compared to the autoregressive Transformer.