to

### Limits for Compact Representation of Plans

Most planning formalisms allow instances with shortest plans of exponential length. While such instances are problematic, they are usually unavoidable and can occur in practice. There are several known cases of restricted planning problems where plans can be exponential but always have a compact (ie. polynomial) representation, often using recursive macros. Such compact representations are important since exponential plans are difficult both to use and to understand. We show that these results do not extend to the general case, by proving a number of bounds for compact representations of plans under various criteria, like efficient sequential or random access of actions. Further, we show that it is unlikely to get around this by reformulating planning into some other problem. The results are discussed in the context of abstraction, macros and plan explanation.

### Algorithms and Limits for Compact Plan Representations

Compact representations of objects is a common concept in computer science. Automated planning can be viewed as a case of this concept: a planning instance is a compact implicit representation of a graph and the problem is to find a path (a plan) in this graph. While the graphs themselves are represented compactly as planning instances, the paths are usually represented explicitly as sequences of actions. Some cases are known where the plans always have compact representations, for example, using macros. We show that these results do not extend to the general case, by proving a number of bounds for compact representations of plans under various criteria, like efficient sequential or random access of actions. In addition to this, we show that our results have consequences for what can be gained from reformulating planning into some other problem. As a contrast to this we also prove a number of positive results, demonstrating restricted cases where plans do have useful compact representations, as well as proving that macro plans have favourable access properties. Our results are finally discussed in relation to other relevant contexts.

### Algorithms and Limits for Compact Plan Representations

Compact representations of objects is a common concept in computer science. Automated planning can be viewed as a case of this concept: a planning instance is a compact implicit representation of a graph and the problem is to find a path (a plan) in this graph. While the graphs themselves are represented compactly as planning instances, the paths are usually represented explicitly as sequences of actions. Some cases are known where the plans always have compact representations, for example, using macros. We show that these results do not extend to the general case, by proving a number of bounds for compact representations of plans under various criteria, like efficient sequential or random access of actions. In addition to this, we show that our results have consequences for what can be gained from reformulating planning into some other problem. As a contrast to this we also prove a number of positive results, demonstrating restricted cases where plans do have useful compact representations, as well as proving that macro plans have favourable access properties. Our results are finally discussed in relation to other relevant contexts.

### Automaton Plans

Macros have long been used in planning to represent subsequences of operators. Macros can be used in place of individual operators during search, sometimes reducing the effort required to find a plan to the goal. Another use of macros is to compactly represent long plans. In this paper we introduce a novel solution concept called automaton plans in which plans are represented using hierarchies of automata. Automaton plans can be viewed as an extension of macros that enables parameterization and branching. We provide several examples that illustrate how automaton plans can be useful, both as a compact representation of exponentially long plans and as an alternative to sequential solutions in benchmark domains such as Logistics and Grid. We also compare automaton plans to other compact plan representations from the literature, and find that automaton plans are strictly more expressive than macros, but strictly less expressive than HTNs and certain representations allowing efficient sequential access to the operators of the plan.

### Automaton Plans

Macros have long been used in planning to represent subsequences of operators. Macros can be used in place of individual operators during search, sometimes reducing the effort required to find a plan to the goal. Another use of macros is to compactly represent long plans. In this paper we introduce a novel solution concept called automaton plans in which plans are represented using hierarchies of automata. Automaton plans can be viewed as an extension of macros that enables parameterization and branching. We provide several examples that illustrate how automaton plans can be useful, both as a compact representation of exponentially long plans and as an alternative to sequential solutions in benchmark domains such as LOGISTICS and GRID. We also compare automaton plans to other compact plan representations from the literature, and find that automaton plans are strictly more expressive than macros, but strictly less expressive than HTNs and certain representations allowing efficient sequential access to the operators of the plan.