Goto

Collaborating Authors

Investigating bankruptcy prediction models in the presence of extreme class imbalance and multiple stages of economy

arXiv.org Machine Learning

In the area of credit risk analytics, current Bankruptcy Prediction Models (BPMs) struggle with (a) the availability of comprehensive and real-world data sets and (b) the presence of extreme class imbalance in the data (i.e., very few samples for the minority class) that degrades the performance of the prediction model. Moreover, little research has compared the relative performance of well-known BPM's on public datasets addressing the class imbalance problem. In this work, we apply eight classes of well-known BPMs, as suggested by a review of decades of literature, on a new public dataset named Freddie Mac Single-Family Loan-Level Dataset with resampling (i.e., adding synthetic minority samples) of the minority class to tackle class imbalance. Additionally, we apply some recent AI techniques (e.g., tree-based ensemble techniques) that demonstrate potentially better results on models trained with resampled data. In addition, from the analysis of 19 years (1999-2017) of data, we discover that models behave differently when presented with sudden changes in the economy (e.g., a global financial crisis) resulting in abrupt fluctuations in the national default rate. In summary, this study should aid practitioners/researchers in determining the appropriate model with respect to data that contains a class imbalance and various economic stages.


Automating the Underwriting of Insurance Applications

AI Magazine

An end-to-end system was created at Genworth Financial to automate the underwriting of long-term care (LTC) and life insurance applications. Relying heavily on artificial intelligence techniques, the system has been in production since December 2002 and in 2004 completely automates the underwriting of 19 percent of the LTC applications. A fuzzy logic rules engine encodes the underwriter guidelines and an evolutionary algorithm optimizes the engine's performance. Finally, a natural language parser is used to improve the coverage of the underwriting system.


anni

AAAI Conferences

Fannie Mae, the nation's largest source of conventional mortgage funds, has made a commitment to use technology to improve the efficiency of processing a loan by reducing the time, paperwork and cost associated with loan origination. The Desktop Underwriter (DU) system which was developed as a result of this commitment, is an automated underwriting expert system that applies both heuristics and statistics to the problem. The system supports both the wholesale and retail mortgage environments and is built to reason and underwrite loans with incomplete, unverified and conflicting data. The system generates a credit recommendation based on the loan's conformity to credit standards and an eligibility recommendation based on the loan's conformity to eligibility


Designing Quality into Expert Systems: A Case Study in Automated Insurance Underwriting

AAAI Conferences

It can be difficult to design and develop artificial intelligence systems to meet specific quality standards. Often, AI systems are designed to be "as good as possible" rather than meeting particular targets. Using the Design for Six Sigma quality methodology, an automated insurance underwriting expert system was designed, developed, and fielded. Using this methodology resulted in meeting the high quality expectations required for deployment.


IAAI95-005.pdf

AAAI Conferences

The GENIUS Automated Underwriting System is an expert advisor that has been in successful nationwide production by GE Mortgage Insurance Corporation for two years to underwrite mortgage insurance. The knowledge base was developed using a unique hybrid approach combining the best of traditional knowledge engineering and a novel machine learning method called Example Based Evidential Reasoning (EBER). As one indicator of the effkacy of this approach, a complex system was completed in 11 months that achieved a 98% agreement rate with practicing underwriters for approve recommendations in the fist month of operation. This performance and numerous additional business benefits have now been confirmed by two full years of nationwide production during which time some 800,000 applications have been underwritten. As a result of this outstanding success, the GENIUS system is serving as the basis for a major re-engineering of the underwriting process within the business. Also, a new version has recently been announced as an external product to bring the benefits of this technology to the mortgage industry at large. In addition, the concepts and methodology are being applied to other financial services applications such as commercial credit analysis and municipal bond credit enhancement. This paper documents the development process and operational results and concludes with a summary of critical success factors.