Collaborating Authors

ADSaS: Comprehensive Real-time Anomaly Detection System Machine Learning

Since with massive data growth, the need for autonomous and generic anomaly detection system is increased. However, developing one stand-alone generic anomaly detection system that is accurate and fast is still a challenge. In this paper, we propose conventional time-series analysis approaches, the Seasonal Autoregressive Integrated Moving Average (SARIMA) model and Seasonal Trend decomposition using Loess (STL), to detect complex and various anomalies. Usually, SARIMA and STL are used only for stationary and periodic time-series, but by combining, we show they can detect anomalies with high accuracy for data that is even noisy and non-periodic. We compared the algorithm to Long Short Term Memory (LSTM), a deep-learning-based algorithm used for anomaly detection system. We used a total of seven real-world datasets and four artificial datasets with different time-series properties to verify the performance of the proposed algorithm.

RobustTAD: Robust Time Series Anomaly Detection via Decomposition and Convolutional Neural Networks Machine Learning

The monitoring and management of numerous and diverse time series data at Alibaba Group calls for an effective and scalable time series anomaly detection service. In this paper, we propose RobustTAD, a Robust Time series Anomaly Detection framework by integrating robust seasonal-trend decomposition and convolutional neural network for time series data. The seasonal-trend decomposition can effectively handle complicated patterns in time series, and meanwhile significantly simplifies the architecture of the neural network, which is an encoder-decoder architecture with skip connections. This architecture can effectively capture the multi-scale information from time series, which is very useful in anomaly detection. Due to the limited labeled data in time series anomaly detection, we systematically investigate data augmentation methods in both time and frequency domains. We also introduce label-based weight and value-based weight in the loss function by utilizing the unbalanced nature of the time series anomaly detection problem. Compared with the widely used forecasting-based anomaly detection algorithms, decomposition-based algorithms, traditional statistical algorithms, as well as recent neural network based algorithms, RobustTAD performs significantly better on public benchmark datasets. It is deployed as a public online service and widely adopted in different business scenarios at Alibaba Group.

Time Series Anomaly Detection; Detection of anomalous drops with limited features and sparse examples in noisy highly periodic data Machine Learning

Google uses continuous streams of data from industry partners in order to deliver accurate results to users. Unexpected drops in traffic can be an indication of an underlying issue and may be an early warning that remedial action may be necessary. Detecting such drops is non-trivial because streams are variable and noisy, with roughly regular spikes (in many different shapes) in traffic data. We investigated the question of whether or not we can predict anomalies in these data streams. Our goal is to utilize Machine Learning and statistical approaches to classify anomalous drops in periodic, but noisy, traffic patterns. Since we do not have a large body of labeled examples to directly apply supervised learning for anomaly classification, we approached the problem in two parts. First we used TensorFlow to train our various models including DNNs, RNNs, and LSTMs to perform regression and predict the expected value in the time series. Secondly we created anomaly detection rules that compared the actual values to predicted values. Since the problem requires finding sustained anomalies, rather than just short delays or momentary inactivity in the data, our two detection methods focused on continuous sections of activity rather than just single points. We tried multiple combinations of our models and rules and found that using the intersection of our two anomaly detection methods proved to be an effective method of detecting anomalies on almost all of our models. In the process we also found that not all data fell within our experimental assumptions, as one data stream had no periodicity, and therefore no time based model could predict it.

Sequential VAE-LSTM for Anomaly Detection on Time Series Machine Learning

In order to support stable web-based applications and services, anomalies on the IT performance status have to be detected timely. Moreover, the performance trend across the time series should be predicted. In this paper, we propose SeqVL (Sequential VAE-LSTM), a neural network model based on both VAE (Variational Auto-Encoder) and LSTM (Long Short-Term Memory). This work is the first attempt to integrate unsupervised anomaly detection and trend prediction under one framework. Moreover, this model performs considerably better on detection and prediction than VAE and LSTM work alone. On unsupervised anomaly detection, SeqVL achieves competitive experimental results compared with other state-of-the-art methods on public datasets. On trend prediction, SeqVL outperforms several classic time series prediction models in the experiments of the public dataset.

Building an Automated and Self-Aware Anomaly Detection System Artificial Intelligence

Organizations rely heavily on time series metrics to measure and model key aspects of operational and business performance. The ability to reliably detect issues with these metrics is imperative to identifying early indicators of major problems before they become pervasive. It can be very challenging to proactively monitor a large number of diverse and constantly changing time series for anomalies, so there are often gaps in monitoring coverage, disabled or ignored monitors due to false positive alarms, and teams resorting to manual inspection of charts to catch problems. Traditionally, variations in the data generation processes and patterns have required strong modeling expertise to create models that accurately flag anomalies. In this paper, we describe an anomaly detection system that overcomes this common challenge by keeping track of its own performance and making changes as necessary to each model without requiring manual intervention. We demonstrate that this novel approach outperforms available alternatives on benchmark datasets in many scenarios.