Inter-time segment information sharing for non-homogeneous dynamic Bayesian networks

Neural Information Processing Systems

Conventional dynamic Bayesian networks (DBNs) are based on the homogeneous Markov assumption, which is too restrictive in many practical applications. Various approaches to relax the homogeneity assumption have therefore been proposed in the last few years. The present paper aims to improve the flexibility of two recent versions of non-homogeneous DBNs, which either (i) suffer from the need for data discretization, or (ii) assume a time-invariant network structure. Allowing the network structure to be fully flexible leads to the risk of overfitting and inflated inference uncertainty though, especially in the highly topical field of systems biology, where independent measurements tend to be sparse. In the present paper we investigate three conceptually different regularization schemes based on inter-segment information sharing. We assess the performance in a comparative evaluation study based on simulated data. We compare the predicted segmentation of gene expression time series obtained during embryogenesis in Drosophila melanogaster with other state-of-the-art techniques. We conclude our evaluation with an application to synthetic biology, where the objective is to predict a known regulatory network of five genes in Saccharomyces cerevisiae.


Non-stationary continuous dynamic Bayesian networks

Neural Information Processing Systems

Dynamic Bayesian networks have been applied widely to reconstruct the structure of regulatory processes from time series data. The standard approach is based on the assumption of a homogeneous Markov chain, which is not valid in many real-world scenarios. Recent research efforts addressing this shortcoming have considered undirected graphs, directed graphs for discretized data, or over-flexible models that lack any information sharing between time series segments. In the present article, we propose a non-stationary dynamic Bayesian network for continuous data, in which parameters are allowed to vary between segments, and in which a common network structure provides essential information sharing across segments. Our model is based on a Bayesian change-point process, and we apply a variant of the allocation sampler of Nobile and Fearnside to infer the number and location of the change-points.


Universal Network Representation for Heterogeneous Information Networks

arXiv.org Artificial Intelligence

Network representation aims to represent the nodes in a network as continuous and compact vectors, and has attracted much attention in recent years due to its ability to capture complex structure relationships inside networks. However, existing network representation methods are commonly designed for homogeneous information networks where all the nodes (entities) of a network are of the same type, e.g., papers in a citation network. In this paper, we propose a universal network representation approach (UNRA), that represents different types of nodes in heterogeneous information networks in a continuous and common vector space. The UNRA is built on our latest mutually updated neural language module, which simultaneously captures inter-relationship among homogeneous nodes and node-content correlation. Relationships between different types of nodes are also assembled and learned in a unified framework. Experiments validate that the UNRA achieves outstanding performance, compared to six other state-of-the-art algorithms, in node representation, node classification, and network visualization. In node classification, the UNRA achieves a 3\% to 132\% performance improvement in terms of accuracy.


Creating Intelligent Linking for Information Threading in Knowledge Networks

arXiv.org Artificial Intelligence

Informledge System (ILS) is a knowledge network with autonomous nodes and intelligent links that integrate and structure the pieces of knowledge. In this paper, we aim to put forward the link dynamics involved in intelligent processing of information in ILS. There has been advancement in knowledge management field which involve managing information in databases from a single domain. ILS works with information from multiple domains stored in distributed way in the autonomous nodes termed as Knowledge Network Node (KNN). Along with the concept under consideration, KNNs store the processed information linking concepts and processors leading to the appropriate processing of information.


Model compression for faster structural separation of macromolecules captured by Cellular Electron Cryo-Tomography

arXiv.org Machine Learning

Electron Cryo-Tomography (ECT) enables 3D visualization of macromolecule structure inside single cells. Macromolecule classification approaches based on convolutional neural networks (CNN) were developed to separate millions of macromolecules captured from ECT systematically. However, given the fast accumulation of ECT data, it will soon become necessary to use CNN models to efficiently and accurately separate substantially more macromolecules at the prediction stage, which requires additional computational costs. To speed up the prediction, we compress classification models into compact neural networks with little in accuracy for deployment. Specifically, we propose to perform model compression through knowledge distillation. Firstly, a complex teacher network is trained to generate soft labels with better classification feasibility followed by training of customized student networks with simple architectures using the soft label to compress model complexity. Our tests demonstrate that our compressed models significantly reduce the number of parameters and time cost while maintaining similar classification accuracy.