Goto

Collaborating Authors

XNLI: Evaluating Cross-lingual Sentence Representations

arXiv.org Artificial Intelligence

State-of-the-art natural language processing systems rely on supervision in the form of annotated data to learn competent models. These models are generally trained on data in a single language (usually English), and cannot be directly used beyond that language. Since collecting data in every language is not realistic, there has been a growing interest in cross-lingual language understanding (XLU) and low-resource cross-language transfer. In this work, we construct an evaluation set for XLU by extending the development and test sets of the Multi-Genre Natural Language Inference Corpus (MultiNLI) to 15 languages, including low-resource languages such as Swahili and Urdu. We hope that our dataset, dubbed XNLI, will catalyze research in cross-lingual sentence understanding by providing an informative standard evaluation task. In addition, we provide several baselines for multilingual sentence understanding, including two based on machine translation systems, and two that use parallel data to train aligned multilingual bag-of-words and LSTM encoders. We find that XNLI represents a practical and challenging evaluation suite, and that directly translating the test data yields the best performance among available baselines.


Multi-Channel Encoder for Neural Machine Translation

AAAI Conferences

Attention-based Encoder-Decoder has the effective architecture for neural machine translation (NMT), which typically relies on recurrent neural networks (RNN) to build the blocks that will be lately called by attentive reader during the decoding process. This design of encoder yields relatively uniform composition on source sentence, despite the gating mechanism employed in encoding RNN. On the other hand, we often hope the decoder to take pieces of source sentence at varying levels suiting its own linguistic structure: for example, we may want to take the entity name in its raw form while taking an idiom as a perfectly composed unit. Motivated by this demand, we propose Multi-channel Encoder (MCE), which enhances encoding components with different levels of composition. More specifically, in addition to the hidden state of encoding RNN, MCE takes 1) the original word embedding for raw encoding with no composition, and 2) a particular design of external memory in Neural Turing Machine NTM) for more complex composition, while all three encoding strategies are properly blended during decoding. Empirical study on Chinese-English translation shows that our model can improve by 6.52 BLEU points upon a strong open source NMT system: DL4MT1. On the WMT14 English-French task, our single shallow system achieves BLEU=38.8, comparable with the state-of-the-art deep models.


Full-Sentence Models Perform Better in Simultaneous Translation Using the Information Enhanced Decoding Strategy

arXiv.org Artificial Intelligence

Simultaneous translation, which starts translating each sentence after receiving only a few words in source sentence, has a vital role in many scenarios. Although the previous prefix-to-prefix framework is considered suitable for simultaneous translation and achieves good performance, it still has two inevitable drawbacks: the high computational resource costs caused by the need to train a separate model for each latency $k$ and the insufficient ability to encode information because each target token can only attend to a specific source prefix. We propose a novel framework that adopts a simple but effective decoding strategy which is designed for full-sentence models. Within this framework, training a single full-sentence model can achieve arbitrary given latency and save computational resources. Besides, with the competence of the full-sentence model to encode the whole sentence, our decoding strategy can enhance the information maintained in the decoded states in real time. Experimental results show that our method achieves better translation quality than baselines on 4 directions: Zh$\rightarrow$En, En$\rightarrow$Ro and En$\leftrightarrow$De.


Neural Translation – Machine Translation with Neural Nets with Keras / Python

#artificialintelligence

In this blog, we shall discuss about how to build a neural network to translate from English to German. This problem appeared as the Capstone project for the coursera course "Tensorflow 2: Customising your model", a part of the specialization "Tensorflow2 for Deep Learning", by the Imperial College, London. The problem statement / description / steps are taken from the course itself. We shall use the concepts from the course, including building more flexible model architectures, freezing layers, data processing pipeline and sequence modelling. Here we shall use a language dataset from http://www.manythings.org/anki/


Transfer Learning for Sequence Generation: from Single-source to Multi-source

arXiv.org Artificial Intelligence

Multi-source sequence generation (MSG) is an important kind of sequence generation tasks that takes multiple sources, including automatic post-editing, multi-source translation, multi-document summarization, etc. As MSG tasks suffer from the data scarcity problem and recent pretrained models have been proven to be effective for low-resource downstream tasks, transferring pretrained sequence-to-sequence models to MSG tasks is essential. Although directly finetuning pretrained models on MSG tasks and concatenating multiple sources into a single long sequence is regarded as a simple method to transfer pretrained models to MSG tasks, we conjecture that the direct finetuning method leads to catastrophic forgetting and solely relying on pretrained self-attention layers to capture cross-source information is not sufficient. Therefore, we propose a two-stage finetuning method to alleviate the pretrain-finetune discrepancy and introduce a novel MSG model with a fine encoder to learn better representations in MSG tasks. Experiments show that our approach achieves new state-of-the-art results on the WMT17 APE task and multi-source translation task using the WMT14 test set. When adapted to document-level translation, our framework outperforms strong baselines significantly.