Tensor Completion Algorithms in Big Data Analytics

arXiv.org Machine Learning

Tensor completion is a problem of filling the missing or unobserved entries of partially observed tensors. Due to the multidimensional character of tensors in describing complex datasets, tensor completion algorithms and their applications have received wide attention and achievement in data mining, computer vision, signal processing, and neuroscience, etc. In this survey, we provide a modern overview of recent advances in tensor completion algorithms from the perspective of big data analytics characterized by diverse variety, large volume, and high velocity. Towards a better comprehension and comparison of vast existing advances, we summarize and categorize them into four groups including general tensor completion algorithms, tensor completion with auxiliary information (variety), scalable tensor completion algorithms (volume) and dynamic tensor completion algorithms (velocity). Besides, we introduce their applications on real-world data-driven problems and present an open-source package covering several widely used tensor decomposition and completion algorithms. Our goal is to summarize these popular methods and introduce them to researchers for promoting the research process in this field and give an available repository for practitioners. In the end, we also discuss some challenges and promising research directions in this community for future explorations.

A New Sampling Technique for Tensors

arXiv.org Machine Learning

In this paper we propose new techniques to sample arbitrary third-order tensors, with an objective of speeding up tensor algorithms that have recently gained popularity in machine learning. Our main contribution is a new way to select, in a biased random way, only $O(n^{1.5}/\epsilon^2)$ of the possible $n^3$ elements while still achieving each of the three goals: \\ {\em (a) tensor sparsification}: for a tensor that has to be formed from arbitrary samples, compute very few elements to get a good spectral approximation, and for arbitrary orthogonal tensors {\em (b) tensor completion:} recover an exactly low-rank tensor from a small number of samples via alternating least squares, or {\em (c) tensor factorization:} approximating factors of a low-rank tensor corrupted by noise. \\ Our sampling can be used along with existing tensor-based algorithms to speed them up, removing the computational bottleneck in these methods.

Canonical Tensor Decomposition for Knowledge Base Completion

arXiv.org Artificial Intelligence

The problem of Knowledge Base Completion can be framed as a 3rd-order binary tensor completion problem. In this light, the Canonical Tensor Decomposition (CP) (Hitchcock, 1927) seems like a natural solution; however, current implementations of CP on standard Knowledge Base Completion benchmarks are lagging behind their competitors. In this work, we attempt to understand the limits of CP for knowledge base completion. First, we motivate and test a novel regularizer, based on tensor nuclear $p$-norms. Then, we present a reformulation of the problem that makes it invariant to arbitrary choices in the inclusion of predicates or their reciprocals in the dataset. These two methods combined allow us to beat the current state of the art on several datasets with a CP decomposition, and obtain even better results using the more advanced ComplEx model.

Bayesian CP Factorization of Incomplete Tensors with Automatic Rank Determination

arXiv.org Machine Learning

CANDECOMP/PARAFAC (CP) tensor factorization of incomplete data is a powerful technique for tensor completion through explicitly capturing the multilinear latent factors. The existing CP algorithms require the tensor rank to be manually specified, however, the determination of tensor rank remains a challenging problem especially for CP rank. In addition, existing approaches do not take into account uncertainty information of latent factors, as well as missing entries. To address these issues, we formulate CP factorization using a hierarchical probabilistic model and employ a fully Bayesian treatment by incorporating a sparsity-inducing prior over multiple latent factors and the appropriate hyperpriors over all hyperparameters, resulting in automatic rank determination. To learn the model, we develop an efficient deterministic Bayesian inference algorithm, which scales linearly with data size. Our method is characterized as a tuning parameter-free approach, which can effectively infer underlying multilinear factors with a low-rank constraint, while also providing predictive distributions over missing entries. Extensive simulations on synthetic data illustrate the intrinsic capability of our method to recover the ground-truth of CP rank and prevent the overfitting problem, even when a large amount of entries are missing. Moreover, the results from real-world applications, including image inpainting and facial image synthesis, demonstrate that our method outperforms state-of-the-art approaches for both tensor factorization and tensor completion in terms of predictive performance.

Provable Tensor Factorization with Missing Data

Neural Information Processing Systems

We study the problem of low-rank tensor factorization in the presence of missing data. We ask the following question: how many sampled entries do we need, to efficiently and exactly reconstruct a tensor with a low-rank orthogonal decomposition? We propose a novel alternating minimization based method which iteratively refines estimates of the singular vectors. We show that under certain standard assumptions, our method can recover a three-mode $n\times n\times n$ dimensional rank-$r$ tensor exactly from $O(n^{3/2} r^5 \log^4 n)$ randomly sampled entries. In the process of proving this result, we solve two challenging sub-problems for tensors with missing data. First, in analyzing the initialization step, we prove a generalization of a celebrated result by Szemer\'edie et al. on the spectrum of random graphs. Next, we prove global convergence of alternating minimization with a good initialization. Simulations suggest that the dependence of the sample size on dimensionality $n$ is indeed tight.