Generative Prior Knowledge for Discriminative Classification

Journal of Artificial Intelligence Research

We present a novel framework for integrating prior knowledge into discriminative classifiers. Our framework allows discriminative classifiers such as Support Vector Machines (SVMs) to utilize prior knowledge specified in the generative setting. The dual objective of fitting the data and respecting prior knowledge is formulated as a bilevel program, which is solved (approximately) via iterative application of second-order cone programming. To test our approach, we consider the problem of using WordNet (a semantic database of English language) to improve low-sample classification accuracy of newsgroup categorization. WordNet is viewed as an approximate, but readily available source of background knowledge, and our framework is capable of utilizing it in a flexible way.


Generative Prior Knowledge for Discriminative Classification

AAAI Conferences

We present a novel framework for integrating prior knowledge into discriminative classifiers. Our framework allows discriminative classifiers such as Support Vector Machines (SVMs) to utilize prior knowledge specified in the generative setting. The dual objective of fitting the data and respecting prior knowledge is formulated as a bilevel program, which is solved (approximately) via iterative application of second-order cone programming. To test our approach, we consider the problem of using WordNet (a semantic database of English language) to improve low-sample classification accuracy of newsgroup categorization. WordNet is viewed as an approximate, but readily available source of background knowledge, and our framework is capable of utilizing it in a flexible way.


A Speech Act Classifier for Persian Texts and its Application in Identify Speech Act of Rumors

arXiv.org Machine Learning

Speech Acts (SAs) are one of the important areas of pragmatics, which give us a better understanding of the state of mind of the people and convey an intended language function. Knowledge of the SA of a text can be helpful in analyzing that text in natural language processing applications. This study presents a dictionary-based statistical technique for Persian SA recognition. The proposed technique classifies a text into seven classes of SA based on four criteria: lexical, syntactic, semantic, and surface features. WordNet as the tool for extracting synonym and enriching features dictionary is utilized. To evaluate the proposed technique, we utilized four classification methods including Random Forest (RF), Support Vector Machine (SVM), Naive Bayes (NB), and K-Nearest Neighbors (KNN). The experimental results demonstrate that the proposed method using RF and SVM as the best classifiers achieved a state-of-the-art performance with an accuracy of 0.95 for classification of Persian SAs. Our original vision of this work is introducing an application of SA recognition on social media content, especially the common SA in rumors. Therefore, the proposed system utilized to determine the common SAs in rumors. The results showed that Persian rumors are often expressed in three SA classes including narrative, question, and threat, and in some cases with the request SA.


Empirical Analysis of Foundational Distinctions in Linked Open Data

arXiv.org Artificial Intelligence

The Web and its Semantic extension (i.e. Linked Open Data) contain open global-scale knowledge and make it available to potentially intelligent machines that want to benefit from it. Nevertheless, most of Linked Open Data lack ontological distinctions and have sparse axiomatisation. For example, distinctions such as whether an entity is inherently a class or an individual, or whether it is a physical object or not, are hardly expressed in the data, although they have been largely studied and formalised by foundational ontologies (e.g. DOLCE, SUMO). These distinctions belong to common sense too, which is relevant for many artificial intelligence tasks such as natural language understanding, scene recognition, and the like. There is a gap between foundational ontologies, that often formalise or are inspired by pre-existing philosophical theories and are developed with a top-down approach, and Linked Open Data that mostly derive from existing databases or crowd-based effort (e.g. DBpedia, Wikidata). We investigate whether machines can learn foundational distinctions over Linked Open Data entities, and if they match common sense. We want to answer questions such as "does the DBpedia entity for dog refer to a class or to an instance?". We report on a set of experiments based on machine learning and crowdsourcing that show promising results.


Bayesian Chain Classifiers for Multidimensional Classification

AAAI Conferences

In multidimensional classification the goal is to assign an instance to a set of different classes. This task is normally addressed either by defining a compound class variable with all the possible combinations of classes (label power-set methods, LPMs) or by building independent classifiers for each class (binary-relevance methods, BRMs). However, LPMs do not scale well and BRMs ignore the dependency relations between classes. We introduce a method for chaining binary Bayesian classifiers that combines the strengths of classifier chains and Bayesian networks for multidimensional classification. The method consists of two phases. In the first phase, a Bayesian network (BN) that represents the dependency relations between the class variables is learned from data. In the second phase, several chain classifiers are built, such that the order of the class variables in the chain is consistent with the class BN. At the end we combine the results of the different generated orders. Our method considers the dependencies between class variables and takes advantage of the conditional independence relations to build simplified models. We perform experiments with a chain of naive Bayes classifiers on different benchmark multidimensional datasets and show that our approach outperforms other state-of-the-art methods.