Non-linear Label Ranking for Large-scale Prediction of Long-Term User Interests

arXiv.org Machine Learning

We consider the problem of personalization of online services from the viewpoint of ad targeting, where we seek to find the best ad categories to be shown to each user, resulting in improved user experience and increased advertisers' revenue. We propose to address this problem as a task of ranking the ad categories depending on a user's preference, and introduce a novel label ranking approach capable of efficiently learning non-linear, highly accurate models in large-scale settings. Experiments on a real-world advertising data set with more than 3.2 million users show that the proposed algorithm outperforms the existing solutions in terms of both rank loss and top-K retrieval performance, strongly suggesting the benefit of using the proposed model on large-scale ranking problems.


Non-Linear Label Ranking for Large-Scale Prediction of Long-Term User Interests

AAAI Conferences

We consider the problem of personalization of online services from the viewpoint of ad targeting, where we seek to find the best ad categories to be shown to each user, resulting in improved user experience and increased advertiser's revenue. We propose to address this problem as a task of ranking the ad categories depending on a user's preference, and introduce a novel label ranking approach capable of efficiently learning non-linear, highly accurate models in large-scale settings. Experiments on real-world advertising data set with more than 3.2 million users show that the proposed algorithm outperforms the existing solutions in terms of both rank loss and top-K retrieval performance, strongly suggesting the benefit of using the proposed model on large-scale ranking problems.


Label Ranking with Abstention: Predicting Partial Orders by Thresholding Probability Distributions (Extended Abstract)

arXiv.org Artificial Intelligence

We consider an extension of the setting of label ranking, in which the learner is allowed to make predictions in the form of partial instead of total orders. Predictions of that kind are interpreted as a partial abstention: If the learner is not sufficiently certain regarding the relative order of two alternatives, it may abstain from this decision and instead declare these alternatives as being incomparable. We propose a new method for learning to predict partial orders that improves on an existing approach, both theoretically and empirically. Our method is based on the idea of thresholding the probabilities of pairwise preferences between labels as induced by a predicted (parameterized) probability distribution on the set of all rankings.


ROAR: Robust Label Ranking for Social Emotion Mining

AAAI Conferences

Understanding and predicting latent emotions of users toward online contents, known as social emotion mining, has become increasingly important to both social platforms and businesses alike. Despite recent developments, however, very little attention has been made to the issues of nuance, subjectivity, and bias of social emotions. In this paper, we fill this gap by formulating social emotion mining as a robust label ranking problem, and propose: (1) a robust measure, named as G-mean-rank (GMR), which sets a formal criterion consistent with practical intuition; and (2) a simple yet effective label ranking model, named as ROAR, that is more robust toward unbalanced datasets (which are common). Through comprehensive empirical validation using 4 real datasets and 16 benchmark semi-synthetic label ranking datasets, and a case study, we demonstrate the superiorities of our proposals over 2 popular label ranking measures and 6 competing label ranking algorithms. The datasets and implementations used in the empirical validation are available for access.


Online Rank Elicitation for Plackett-Luce: A Dueling Bandits Approach

Neural Information Processing Systems

We study the problem of online rank elicitation, assuming that rankings of a set of alternatives obey the Plackett-Luce distribution. Following the setting of the dueling bandits problem, the learner is allowed to query pairwise comparisons between alternatives, i.e., to sample pairwise marginals of the distribution in an online fashion. Using this information, the learner seeks to reliably predict the most probable ranking (or top-alternative). Our approach is based on constructing a surrogate probability distribution over rankings based on a sorting procedure, for which the pairwise marginals provably coincide with the marginals of the Plackett-Luce distribution.