Collaborating Authors

The Social World of Twitter: Topics, Geography, and Emotions

AAAI Conferences

Debate is open as to whether social media communities resemble real-life communities, and to what extent. We contribute to this discussion by testing whether established sociological theories of real-life networks hold in Twitter. In particular, for 228,359 Twitter profiles, we compute network metrics (e.g., reciprocity, structural holes, simmelian ties) that the sociological literature has found to be related to parts of one's social world (i.e., to topics, geography and emotions), and test whether these real-life associations still hold in Twitter. We find that, much like individuals in real-life communities, social brokers (those who span structural holes) are opinion leaders who tweet about diverse topics, have geographically wide networks, and express not only positive but also negative emotions. Furthermore, Twitter users who express positive (negative) emotions cluster together, to the extent of having a correlation coefficient between one's emotions and those of friends as high as 0.45. Understanding Twitter's social dynamics does not only have theoretical implications for studies of social networks but also has practical implications, including the design of self-reflecting user interfaces that make people aware of their emotions, spam detection tools, and effective marketing campaigns.

#Londonsburning: Integrating Geographic, Topical and Social Information during Crisis

AAAI Conferences

Social media, such as microblogging, is a potentially powerful medium through which the city and its citizens can connect, particularly during times of crisis or extreme events. Yet neither the city nor its citizens are monolithic entities. We propose methods to integrate geographic, topical, and social information and behavior to improve situational understanding throughout the city, and enable more effective public and official response. We demonstrate this approach using Twitter data from the 2011 London riots.

Predicting the Speed, Scale, and Range of Information Diffusion in Twitter

AAAI Conferences

We present results of network analyses of information diffusion on Twitter, via users’ ongoing social interactions as denoted by “@username” mentions. Incorporating survival analysis, we constructed a novel model to capture the three major properties of information diffusion: speed, scale, and range. On the whole, we find that some properties of the tweets themselves predict greater information propagation but that properties of the users, the rate with which a user is mentioned historically in particular, are equal or stronger predictors. Implications for end users and system designers are discussed.

Measuring User Influence in Twitter: The Million Follower Fallacy

AAAI Conferences

Directed links in social media could represent anything from intimate friendships to common interests, or even a passion for breaking news or celebrity gossip. Such directed links determine the flow of information and hence indicate a user's influence on others — a concept that is crucial in sociology and viral marketing. In this paper, using a large amount of data collected from Twitter, we present an in-depth comparison of three measures of influence: indegree, retweets, and mentions. Based on these measures, we investigate the dynamics of user influence across topics and time. We make several interesting observations. First, popular users who have high indegree are not necessarily influential in terms of spawning retweets or mentions. Second, most influential users can hold significant influence over a variety of topics. Third, influence is not gained spontaneously or accidentally, but through concerted effort such as limiting tweets to a single topic. We believe that these findings provide new insights for viral marketing and suggest that topological measures such as indegree alone reveals very little about the influence of a user.

Detecting and Tracking Political Abuse in Social Media

AAAI Conferences

We study astroturf political campaigns on microblogging platforms: politically-motivated individuals and organizations that use multiple centrally-controlled accounts to create the appearance of widespread support for a candidate or opinion. We describe a machine learning framework that combines topological, content-based and crowdsourced features of information diffusion networks on Twitter to detect the early stages of viral spreading of political misinformation.  We present promising preliminary results with better than 96% accuracy in the detection of astroturf content in the run-up to the 2010 U.S. midterm elections.