Goto

Collaborating Authors

Interactive Learning and Analogical Chaining for Moral and Commonsense Reasoning

AAAI Conferences

Autonomous systems must consider the moral ramifications of their actions. Moral norms vary among people and depend on common sense, posing a challenge for encoding them explicitly in a system. I propose to develop a model of repeated analogical chaining and analogical reasoning to enable autonomous agents to interactively learn to apply common sense and model an individual’s moral norms.


An Integrated Reasoning Approach to Moral Decision-Making

AAAI Conferences

We present a computational model, MoralDM, which integrates several AI techniques in order to model recent psychological findings on moral decision-making. Current theories of moral decision-making extend beyond pure utilitarian models by relying on contextual factors that vary with culture. MoralDM uses a natural language system to produce formal representations from psychological stimuli, to reduce tailorability. The impacts of secular versus sacred values are modeled via qualitative reasoning, using an order of magnitude representation. MoralDM uses a combination of first-principles reasoning and analogical reasoning to determine consequences and utilities when making moral judgments. We describe how MoralDM works and show that it can model psychological results and improve its performance via accumulating examples.



Analogical Chaining with Natural Language Instruction for Commonsense Reasoning

AAAI Conferences

Understanding commonsense reasoning is one of the core challenges of AI. We are exploring an approach inspired by cognitive science, called analogical chaining, to create cognitive systems that can perform commonsense reasoning. Just as rules are chained in deductive systems, multiple analogies build upon each other’s inferences in analogical chaining. The cases used in analogical chaining – called common sense units – are small, to provide inferential focus and broader transfer. Importantly, such common sense units can be learned via natural language instruction, thereby increasing the ease of extending such systems. This paper describes analogical chaining, natural language instruction via microstories, and some subtleties that arise in controlling reasoning. The utility of this technique is demonstrated by performance of an implemented system on problems from the Choice of Plausible Alternatives test of commonsense causal reasoning.


Machine Reading as a Cognitive Science Research Instrument

AAAI Conferences

We describe how we are using natural language techniques to develop systems that can automatically encode a range of input materials for cognitive simulations. We start by summarizing this type of problem, and the components we are using. We then describe three projects that are using this common infrastructure: learning from multimodal materials, modeling decision making in moral dilemmas, and modeling conceptual change in development.