Scalable Inference for Nested Chinese Restaurant Process Topic Models Machine Learning

Nested Chinese Restaurant Process (nCRP) topic models are powerful nonparametric Bayesian methods to extract a topic hierarchy from a given text corpus, where the hierarchical structure is automatically determined by the data. Hierarchical Latent Dirichlet Allocation (hLDA) is a popular instance of nCRP topic models. However, hLDA has only been evaluated at small scale, because the existing collapsed Gibbs sampling and instantiated weight variational inference algorithms either are not scalable or sacrifice inference quality with mean-field assumptions. Moreover, an efficient distributed implementation of the data structures, such as dynamically growing count matrices and trees, is challenging. In this paper, we propose a novel partially collapsed Gibbs sampling (PCGS) algorithm, which combines the advantages of collapsed and instantiated weight algorithms to achieve good scalability as well as high model quality. An initialization strategy is presented to further improve the model quality. Finally, we propose an efficient distributed implementation of PCGS through vectorization, pre-processing, and a careful design of the concurrent data structures and communication strategy. Empirical studies show that our algorithm is 111 times more efficient than the previous open-source implementation for hLDA, with comparable or even better model quality. Our distributed implementation can extract 1,722 topics from a 131-million-document corpus with 28 billion tokens, which is 4-5 orders of magnitude larger than the previous largest corpus, with 50 machines in 7 hours.

The Infinite Markov Model

Neural Information Processing Systems

We present a nonparametric Bayesian method of estimating variable order Markov processes up to a theoretically infinite order. By extending a stick-breaking prior, which is usually defined on a unit interval, "vertically" to the trees of infinite depth associated with a hierarchical Chinese restaurant process, our model directly infers the hidden orders of Markov dependencies from which each symbol originated. Experiments on character and word sequences in natural language showed that the model has a comparative performance with an exponentially large full-order model, while computationally much efficient in both time and space. We expect that this basic model will also extend to the variable order hierarchical clustering of general data.

Estimating Heterogeneous Consumer Preferences for Restaurants and Travel Time Using Mobile Location Data Machine Learning

This paper analyzes consumer choices over lunchtime restaurants using data from a sample of several thousand anonymous mobile phone users in the San Francisco Bay Area. The data is used to identify users' approximate typical morning location, as well as their choices of lunchtime restaurants. We build a model where restaurants have latent characteristics (whose distribution may depend on restaurant observables, such as star ratings, food category, and price range), each user has preferences for these latent characteristics, and these preferences are heterogeneous across users. Similarly, each item has latent characteristics that describe users' willingness to travel to the restaurant, and each user has individual-specific preferences for those latent characteristics. Thus, both users' willingness to travel and their base utility for each restaurant vary across user-restaurant pairs. We use a Bayesian approach to estimation. To make the estimation computationally feasible, we rely on variational inference to approximate the posterior distribution, as well as stochastic gradient descent as a computational approach. Our model performs better than more standard competing models such as multinomial logit and nested logit models, in part due to the personalization of the estimates. We analyze how consumers re-allocate their demand after a restaurant closes to nearby restaurants versus more distant restaurants with similar characteristics, and we compare our predictions to actual outcomes. Finally, we show how the model can be used to analyze counterfactual questions such as what type of restaurant would attract the most consumers in a given location.

Query Expansion in Information Retrieval Systems using a Bayesian Network-Based Thesaurus Artificial Intelligence

Information Retrieval (IR) is concerned with the identification of documents in a collection that are relevant to a given information need, usually represented as a query containing terms or keywords, which are supposed to be a good description of what the user is looking for. IR systems may improve their effectiveness (i.e., increasing the number of relevant documents retrieved) by using a process of query expansion, which automatically adds new terms to the original query posed by an user. In this paper we develop a method of query expansion based on Bayesian networks. Using a learning algorithm, we construct a Bayesian network that represents some of the relationships among the terms appearing in a given document collection; this network is then used as a thesaurus (specific for that collection). We also report the results obtained by our method on three standard test collections.

Latent Dirichlet Allocation Using Gibbs Sampling


Text clustering is a widely used techniques to automatically draw out patterns from a set of documents. This notion can be extended to customer segmentation in the digital marketing field. As one of its main core is to understand what drives visitors to come, leave and behave on site. One simple way to do this is by reviewing words that they used to arrive on site and what words they used ( what things they searched) once they're on your site. Another usage of text clustering is for document organization or indexing (tagging).