Goto

Collaborating Authors

Joint Active Feature Acquisition and Classification with Variable-Size Set Encoding

Neural Information Processing Systems

We consider the problem of active feature acquisition where the goal is to sequentially select the subset of features in order to achieve the maximum prediction performance in the most cost-effective way at test time. In this work, we formulate this active feature acquisition as a jointly learning problem of training both the classifier (environment) and the RL agent that decides either to `stop and predict' or `collect a new feature' at test time, in a cost-sensitive manner. We also introduce a novel encoding scheme to represent acquired subsets of features by proposing an order-invariant set encoding at the feature level, which also significantly reduces the search space for our agent. We evaluate our model on a carefully designed synthetic dataset for the active feature acquisition as well as several medical datasets. Our framework shows meaningful feature acquisition process for diagnosis that complies with human knowledge, and outperforms all baselines in terms of prediction performance as well as feature acquisition cost.


Joint Active Feature Acquisition and Classification with Variable-Size Set Encoding

Neural Information Processing Systems

We consider the problem of active feature acquisition where the goal is to sequentially selectthe subset of features in order to achieve the maximum prediction performance in the most cost-effective way at test time. In this work, we formulate thisactive feature acquisition as a joint learning problem of training both the classifier (environment) and the reinforcement learning (RL) agent that decides either to'stop and predict' or'collect a new feature' at test time, in a cost-sensitive manner. We also introduce a novel encoding scheme to represent acquired subsets of features by proposing an order-invariant set encoding at the feature level, which also significantly reduces the search space for our agent. We evaluate our model on a carefully designed synthetic dataset for the active feature acquisition as well as several medical datasets. Our framework shows meaningful feature acquisition process for diagnosis that complies with human knowledge, and outperforms all baselines in terms of prediction performance as well as feature acquisition cost.


Breaking Boundaries Between Induction Time and Diagnosis Time Active Information Acquisition

Neural Information Processing Systems

There has been a clear distinction between induction or training time and diagnosis time active information acquisition. While active learning during induction focuses on acquiring data that promises to provide the best classification model, the goal at diagnosis time focuses completely on next features to observe about the test case at hand in order to make better predictions about the case. We introduce a model and inferential methods that breaks this distinction. The methods can be used to extend case libraries under a budget but, more fundamentally, provide a framework for guiding agents to collect data under scarce resources, focused by diagnostic challenges. This extension to active learning leads to a new class of policies for real-time diagnosis, where recommended information-gathering sequences include actions that simultaneously seek new data for the case at hand and for cases in the training set.


Test Set Selection using Active Information Acquisition for Predictive Models

arXiv.org Machine Learning

In this paper, we consider active information acquisition when the prediction model is meant to be applied on a targeted subset of the population. The goal is to label a pre-specified fraction of customers in the target or test set by iteratively querying for information from the non-target or training set. The number of queries is limited by an overall budget. Arising in the context of two rather disparate applications- banking and medical diagnosis, we pose the active information acquisition problem as a constrained optimization problem. We propose two greedy iterative algorithms for solving the above problem. We conduct experiments with synthetic data and compare results of our proposed algorithms with few other baseline approaches. The experimental results show that our proposed approaches perform better than the baseline schemes.


Icebreaker: Element-wise Active Information Acquisition with Bayesian Deep Latent Gaussian Model

arXiv.org Artificial Intelligence

In this paper we introduce the ice-start problem, i.e., the challenge of deploying machine learning models when only little or no training data is initially available, and acquiring each feature element of data is associated with costs. This setting is representative for the real-world machine learning applications. For instance, in the health-care domain, when training an AI system for predicting patient metrics from lab tests, obtaining every single measurement comes with a high cost. Active learning, where only the label is associated with a cost does not apply to such problem, because performing all possible lab tests to acquire a new training datum would be costly, as well as unnecessary due to redundancy. We propose Icebreaker, a principled framework to approach the ice-start problem. Icebreaker uses a full Bayesian Deep Latent Gaussian Model (BELGAM) with a novel inference method. Our proposed method combines recent advances in amortized inference and stochastic gradient MCMC to enable fast and accurate posterior inference. By utilizing BELGAM's ability to fully quantify model uncertainty, we also propose two information acquisition functions for imputation and active prediction problems. We demonstrate that BELGAM performs significantly better than the previous VAE (Variational autoencoder) based models, when the data set size is small, using both machine learning benchmarks and real-world recommender systems and health-care applications. Moreover, based on BELGAM, Icebreaker further improves the performance and demonstrate the ability to use minimum amount of the training data to obtain the highest test time performance.